--- rpl/lapack/lapack/dlantp.f 2010/01/26 15:22:45 1.1 +++ rpl/lapack/lapack/dlantp.f 2020/05/21 21:45:59 1.18 @@ -1,10 +1,135 @@ +*> \brief \b DLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLANTP + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* DOUBLE PRECISION FUNCTION DLANTP( NORM, UPLO, DIAG, N, AP, WORK ) +* +* .. Scalar Arguments .. +* CHARACTER DIAG, NORM, UPLO +* INTEGER N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION AP( * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLANTP returns the value of the one norm, or the Frobenius norm, or +*> the infinity norm, or the element of largest absolute value of a +*> triangular matrix A, supplied in packed form. +*> \endverbatim +*> +*> \return DLANTP +*> \verbatim +*> +*> DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm' +*> ( +*> ( norm1(A), NORM = '1', 'O' or 'o' +*> ( +*> ( normI(A), NORM = 'I' or 'i' +*> ( +*> ( normF(A), NORM = 'F', 'f', 'E' or 'e' +*> +*> where norm1 denotes the one norm of a matrix (maximum column sum), +*> normI denotes the infinity norm of a matrix (maximum row sum) and +*> normF denotes the Frobenius norm of a matrix (square root of sum of +*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] NORM +*> \verbatim +*> NORM is CHARACTER*1 +*> Specifies the value to be returned in DLANTP as described +*> above. +*> \endverbatim +*> +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> Specifies whether the matrix A is upper or lower triangular. +*> = 'U': Upper triangular +*> = 'L': Lower triangular +*> \endverbatim +*> +*> \param[in] DIAG +*> \verbatim +*> DIAG is CHARACTER*1 +*> Specifies whether or not the matrix A is unit triangular. +*> = 'N': Non-unit triangular +*> = 'U': Unit triangular +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix A. N >= 0. When N = 0, DLANTP is +*> set to zero. +*> \endverbatim +*> +*> \param[in] AP +*> \verbatim +*> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) +*> The upper or lower triangular matrix A, packed columnwise in +*> a linear array. The j-th column of A is stored in the array +*> AP as follows: +*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; +*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. +*> Note that when DIAG = 'U', the elements of the array AP +*> corresponding to the diagonal elements of the matrix A are +*> not referenced, but are assumed to be one. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), +*> where LWORK >= N when NORM = 'I'; otherwise, WORK is not +*> referenced. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date December 2016 +* +*> \ingroup doubleOTHERauxiliary +* +* ===================================================================== DOUBLE PRECISION FUNCTION DLANTP( NORM, UPLO, DIAG, N, AP, WORK ) * -* -- LAPACK auxiliary routine (version 3.2) -- +* -- LAPACK auxiliary routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 +* December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER DIAG, NORM, UPLO INTEGER N @@ -13,66 +138,6 @@ DOUBLE PRECISION AP( * ), WORK( * ) * .. * -* Purpose -* ======= -* -* DLANTP returns the value of the one norm, or the Frobenius norm, or -* the infinity norm, or the element of largest absolute value of a -* triangular matrix A, supplied in packed form. -* -* Description -* =========== -* -* DLANTP returns the value -* -* DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm' -* ( -* ( norm1(A), NORM = '1', 'O' or 'o' -* ( -* ( normI(A), NORM = 'I' or 'i' -* ( -* ( normF(A), NORM = 'F', 'f', 'E' or 'e' -* -* where norm1 denotes the one norm of a matrix (maximum column sum), -* normI denotes the infinity norm of a matrix (maximum row sum) and -* normF denotes the Frobenius norm of a matrix (square root of sum of -* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. -* -* Arguments -* ========= -* -* NORM (input) CHARACTER*1 -* Specifies the value to be returned in DLANTP as described -* above. -* -* UPLO (input) CHARACTER*1 -* Specifies whether the matrix A is upper or lower triangular. -* = 'U': Upper triangular -* = 'L': Lower triangular -* -* DIAG (input) CHARACTER*1 -* Specifies whether or not the matrix A is unit triangular. -* = 'N': Non-unit triangular -* = 'U': Unit triangular -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. When N = 0, DLANTP is -* set to zero. -* -* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) -* The upper or lower triangular matrix A, packed columnwise in -* a linear array. The j-th column of A is stored in the array -* AP as follows: -* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; -* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. -* Note that when DIAG = 'U', the elements of the array AP -* corresponding to the diagonal elements of the matrix A are -* not referenced, but are assumed to be one. -* -* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), -* where LWORK >= N when NORM = 'I'; otherwise, WORK is not -* referenced. -* * ===================================================================== * * .. Parameters .. @@ -82,17 +147,20 @@ * .. Local Scalars .. LOGICAL UDIAG INTEGER I, J, K - DOUBLE PRECISION SCALE, SUM, VALUE + DOUBLE PRECISION SUM, VALUE * .. -* .. External Subroutines .. - EXTERNAL DLASSQ +* .. Local Arrays .. + DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME + LOGICAL LSAME, DISNAN + EXTERNAL LSAME, DISNAN +* .. +* .. External Subroutines .. + EXTERNAL DLASSQ, DCOMBSSQ * .. * .. Intrinsic Functions .. - INTRINSIC ABS, MAX, SQRT + INTRINSIC ABS, SQRT * .. * .. Executable Statements .. * @@ -108,14 +176,16 @@ IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N DO 10 I = K, K + J - 2 - VALUE = MAX( VALUE, ABS( AP( I ) ) ) + SUM = ABS( AP( I ) ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 10 CONTINUE K = K + J 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = K + 1, K + N - J - VALUE = MAX( VALUE, ABS( AP( I ) ) ) + SUM = ABS( AP( I ) ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 30 CONTINUE K = K + N - J + 1 40 CONTINUE @@ -125,14 +195,16 @@ IF( LSAME( UPLO, 'U' ) ) THEN DO 60 J = 1, N DO 50 I = K, K + J - 1 - VALUE = MAX( VALUE, ABS( AP( I ) ) ) + SUM = ABS( AP( I ) ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 50 CONTINUE K = K + J 60 CONTINUE ELSE DO 80 J = 1, N DO 70 I = K, K + N - J - VALUE = MAX( VALUE, ABS( AP( I ) ) ) + SUM = ABS( AP( I ) ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 70 CONTINUE K = K + N - J + 1 80 CONTINUE @@ -159,7 +231,7 @@ 100 CONTINUE END IF K = K + J - VALUE = MAX( VALUE, SUM ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 110 CONTINUE ELSE DO 140 J = 1, N @@ -175,7 +247,7 @@ 130 CONTINUE END IF K = K + N - J + 1 - VALUE = MAX( VALUE, SUM ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 140 CONTINUE END IF ELSE IF( LSAME( NORM, 'I' ) ) THEN @@ -232,50 +304,70 @@ END IF VALUE = ZERO DO 270 I = 1, N - VALUE = MAX( VALUE, WORK( I ) ) + SUM = WORK( I ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 270 CONTINUE ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. * IF( LSAME( UPLO, 'U' ) ) THEN IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = N + SSQ( 1 ) = ONE + SSQ( 2 ) = N K = 2 DO 280 J = 2, N - CALL DLASSQ( J-1, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL DLASSQ( J-1, AP( K ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL DCOMBSSQ( SSQ, COLSSQ ) K = K + J 280 CONTINUE ELSE - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE K = 1 DO 290 J = 1, N - CALL DLASSQ( J, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL DLASSQ( J, AP( K ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL DCOMBSSQ( SSQ, COLSSQ ) K = K + J 290 CONTINUE END IF ELSE IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = N + SSQ( 1 ) = ONE + SSQ( 2 ) = N K = 2 DO 300 J = 1, N - 1 - CALL DLASSQ( N-J, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL DLASSQ( N-J, AP( K ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL DCOMBSSQ( SSQ, COLSSQ ) K = K + N - J + 1 300 CONTINUE ELSE - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE K = 1 DO 310 J = 1, N - CALL DLASSQ( N-J+1, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL DLASSQ( N-J+1, AP( K ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL DCOMBSSQ( SSQ, COLSSQ ) K = K + N - J + 1 310 CONTINUE END IF END IF - VALUE = SCALE*SQRT( SUM ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * DLANTP = VALUE