File:  [local] / rpl / lapack / lapack / dlansy.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:18 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          NORM, UPLO
   10:       INTEGER            LDA, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
   14: *     ..
   15: *
   16: *  Purpose
   17: *  =======
   18: *
   19: *  DLANSY  returns the value of the one norm,  or the Frobenius norm, or
   20: *  the  infinity norm,  or the  element of  largest absolute value  of a
   21: *  real symmetric matrix A.
   22: *
   23: *  Description
   24: *  ===========
   25: *
   26: *  DLANSY returns the value
   27: *
   28: *     DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   29: *              (
   30: *              ( norm1(A),         NORM = '1', 'O' or 'o'
   31: *              (
   32: *              ( normI(A),         NORM = 'I' or 'i'
   33: *              (
   34: *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   35: *
   36: *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
   37: *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   38: *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
   39: *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   40: *
   41: *  Arguments
   42: *  =========
   43: *
   44: *  NORM    (input) CHARACTER*1
   45: *          Specifies the value to be returned in DLANSY as described
   46: *          above.
   47: *
   48: *  UPLO    (input) CHARACTER*1
   49: *          Specifies whether the upper or lower triangular part of the
   50: *          symmetric matrix A is to be referenced.
   51: *          = 'U':  Upper triangular part of A is referenced
   52: *          = 'L':  Lower triangular part of A is referenced
   53: *
   54: *  N       (input) INTEGER
   55: *          The order of the matrix A.  N >= 0.  When N = 0, DLANSY is
   56: *          set to zero.
   57: *
   58: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   59: *          The symmetric matrix A.  If UPLO = 'U', the leading n by n
   60: *          upper triangular part of A contains the upper triangular part
   61: *          of the matrix A, and the strictly lower triangular part of A
   62: *          is not referenced.  If UPLO = 'L', the leading n by n lower
   63: *          triangular part of A contains the lower triangular part of
   64: *          the matrix A, and the strictly upper triangular part of A is
   65: *          not referenced.
   66: *
   67: *  LDA     (input) INTEGER
   68: *          The leading dimension of the array A.  LDA >= max(N,1).
   69: *
   70: *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
   71: *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
   72: *          WORK is not referenced.
   73: *
   74: * =====================================================================
   75: *
   76: *     .. Parameters ..
   77:       DOUBLE PRECISION   ONE, ZERO
   78:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
   79: *     ..
   80: *     .. Local Scalars ..
   81:       INTEGER            I, J
   82:       DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
   83: *     ..
   84: *     .. External Subroutines ..
   85:       EXTERNAL           DLASSQ
   86: *     ..
   87: *     .. External Functions ..
   88:       LOGICAL            LSAME
   89:       EXTERNAL           LSAME
   90: *     ..
   91: *     .. Intrinsic Functions ..
   92:       INTRINSIC          ABS, MAX, SQRT
   93: *     ..
   94: *     .. Executable Statements ..
   95: *
   96:       IF( N.EQ.0 ) THEN
   97:          VALUE = ZERO
   98:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
   99: *
  100: *        Find max(abs(A(i,j))).
  101: *
  102:          VALUE = ZERO
  103:          IF( LSAME( UPLO, 'U' ) ) THEN
  104:             DO 20 J = 1, N
  105:                DO 10 I = 1, J
  106:                   VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  107:    10          CONTINUE
  108:    20       CONTINUE
  109:          ELSE
  110:             DO 40 J = 1, N
  111:                DO 30 I = J, N
  112:                   VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  113:    30          CONTINUE
  114:    40       CONTINUE
  115:          END IF
  116:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  117:      $         ( NORM.EQ.'1' ) ) THEN
  118: *
  119: *        Find normI(A) ( = norm1(A), since A is symmetric).
  120: *
  121:          VALUE = ZERO
  122:          IF( LSAME( UPLO, 'U' ) ) THEN
  123:             DO 60 J = 1, N
  124:                SUM = ZERO
  125:                DO 50 I = 1, J - 1
  126:                   ABSA = ABS( A( I, J ) )
  127:                   SUM = SUM + ABSA
  128:                   WORK( I ) = WORK( I ) + ABSA
  129:    50          CONTINUE
  130:                WORK( J ) = SUM + ABS( A( J, J ) )
  131:    60       CONTINUE
  132:             DO 70 I = 1, N
  133:                VALUE = MAX( VALUE, WORK( I ) )
  134:    70       CONTINUE
  135:          ELSE
  136:             DO 80 I = 1, N
  137:                WORK( I ) = ZERO
  138:    80       CONTINUE
  139:             DO 100 J = 1, N
  140:                SUM = WORK( J ) + ABS( A( J, J ) )
  141:                DO 90 I = J + 1, N
  142:                   ABSA = ABS( A( I, J ) )
  143:                   SUM = SUM + ABSA
  144:                   WORK( I ) = WORK( I ) + ABSA
  145:    90          CONTINUE
  146:                VALUE = MAX( VALUE, SUM )
  147:   100       CONTINUE
  148:          END IF
  149:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  150: *
  151: *        Find normF(A).
  152: *
  153:          SCALE = ZERO
  154:          SUM = ONE
  155:          IF( LSAME( UPLO, 'U' ) ) THEN
  156:             DO 110 J = 2, N
  157:                CALL DLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  158:   110       CONTINUE
  159:          ELSE
  160:             DO 120 J = 1, N - 1
  161:                CALL DLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  162:   120       CONTINUE
  163:          END IF
  164:          SUM = 2*SUM
  165:          CALL DLASSQ( N, A, LDA+1, SCALE, SUM )
  166:          VALUE = SCALE*SQRT( SUM )
  167:       END IF
  168: *
  169:       DLANSY = VALUE
  170:       RETURN
  171: *
  172: *     End of DLANSY
  173: *
  174:       END

CVSweb interface <joel.bertrand@systella.fr>