Annotation of rpl/lapack/lapack/dlansy.f, revision 1.20

1.11      bertrand    1: *> \brief \b DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DLANSY + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlansy.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlansy.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlansy.f">
1.8       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK )
1.16      bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          NORM, UPLO
                     25: *       INTEGER            LDA, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
                     29: *       ..
1.16      bertrand   30: *
1.8       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DLANSY  returns the value of the one norm,  or the Frobenius norm, or
                     38: *> the  infinity norm,  or the  element of  largest absolute value  of a
                     39: *> real symmetric matrix A.
                     40: *> \endverbatim
                     41: *>
                     42: *> \return DLANSY
                     43: *> \verbatim
                     44: *>
                     45: *>    DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                     46: *>             (
                     47: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
                     48: *>             (
                     49: *>             ( normI(A),         NORM = 'I' or 'i'
                     50: *>             (
                     51: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
                     52: *>
                     53: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
                     54: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
                     55: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
                     56: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
                     57: *> \endverbatim
                     58: *
                     59: *  Arguments:
                     60: *  ==========
                     61: *
                     62: *> \param[in] NORM
                     63: *> \verbatim
                     64: *>          NORM is CHARACTER*1
                     65: *>          Specifies the value to be returned in DLANSY as described
                     66: *>          above.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] UPLO
                     70: *> \verbatim
                     71: *>          UPLO is CHARACTER*1
                     72: *>          Specifies whether the upper or lower triangular part of the
                     73: *>          symmetric matrix A is to be referenced.
                     74: *>          = 'U':  Upper triangular part of A is referenced
                     75: *>          = 'L':  Lower triangular part of A is referenced
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in] N
                     79: *> \verbatim
                     80: *>          N is INTEGER
                     81: *>          The order of the matrix A.  N >= 0.  When N = 0, DLANSY is
                     82: *>          set to zero.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] A
                     86: *> \verbatim
                     87: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     88: *>          The symmetric matrix A.  If UPLO = 'U', the leading n by n
                     89: *>          upper triangular part of A contains the upper triangular part
                     90: *>          of the matrix A, and the strictly lower triangular part of A
                     91: *>          is not referenced.  If UPLO = 'L', the leading n by n lower
                     92: *>          triangular part of A contains the lower triangular part of
                     93: *>          the matrix A, and the strictly upper triangular part of A is
                     94: *>          not referenced.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] LDA
                     98: *> \verbatim
                     99: *>          LDA is INTEGER
                    100: *>          The leading dimension of the array A.  LDA >= max(N,1).
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[out] WORK
                    104: *> \verbatim
                    105: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
                    106: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
                    107: *>          WORK is not referenced.
                    108: *> \endverbatim
                    109: *
                    110: *  Authors:
                    111: *  ========
                    112: *
1.16      bertrand  113: *> \author Univ. of Tennessee
                    114: *> \author Univ. of California Berkeley
                    115: *> \author Univ. of Colorado Denver
                    116: *> \author NAG Ltd.
1.8       bertrand  117: *
                    118: *> \ingroup doubleSYauxiliary
                    119: *
                    120: *  =====================================================================
1.1       bertrand  121:       DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK )
                    122: *
1.20    ! bertrand  123: *  -- LAPACK auxiliary routine --
1.1       bertrand  124: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    125: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    126: *
                    127: *     .. Scalar Arguments ..
                    128:       CHARACTER          NORM, UPLO
                    129:       INTEGER            LDA, N
                    130: *     ..
                    131: *     .. Array Arguments ..
                    132:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
                    133: *     ..
                    134: *
                    135: * =====================================================================
                    136: *
                    137: *     .. Parameters ..
                    138:       DOUBLE PRECISION   ONE, ZERO
                    139:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    140: *     ..
                    141: *     .. Local Scalars ..
                    142:       INTEGER            I, J
1.20    ! bertrand  143:       DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
1.1       bertrand  144: *     ..
1.20    ! bertrand  145: *     .. External Subroutines ..
        !           146:       EXTERNAL           DLASSQ
1.1       bertrand  147: *     ..
                    148: *     .. External Functions ..
1.11      bertrand  149:       LOGICAL            LSAME, DISNAN
                    150:       EXTERNAL           LSAME, DISNAN
1.1       bertrand  151: *     ..
                    152: *     .. Intrinsic Functions ..
1.11      bertrand  153:       INTRINSIC          ABS, SQRT
1.1       bertrand  154: *     ..
                    155: *     .. Executable Statements ..
                    156: *
                    157:       IF( N.EQ.0 ) THEN
                    158:          VALUE = ZERO
                    159:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
                    160: *
                    161: *        Find max(abs(A(i,j))).
                    162: *
                    163:          VALUE = ZERO
                    164:          IF( LSAME( UPLO, 'U' ) ) THEN
                    165:             DO 20 J = 1, N
                    166:                DO 10 I = 1, J
1.11      bertrand  167:                   SUM = ABS( A( I, J ) )
                    168:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  169:    10          CONTINUE
                    170:    20       CONTINUE
                    171:          ELSE
                    172:             DO 40 J = 1, N
                    173:                DO 30 I = J, N
1.11      bertrand  174:                   SUM = ABS( A( I, J ) )
                    175:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  176:    30          CONTINUE
                    177:    40       CONTINUE
                    178:          END IF
                    179:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
                    180:      $         ( NORM.EQ.'1' ) ) THEN
                    181: *
                    182: *        Find normI(A) ( = norm1(A), since A is symmetric).
                    183: *
                    184:          VALUE = ZERO
                    185:          IF( LSAME( UPLO, 'U' ) ) THEN
                    186:             DO 60 J = 1, N
                    187:                SUM = ZERO
                    188:                DO 50 I = 1, J - 1
                    189:                   ABSA = ABS( A( I, J ) )
                    190:                   SUM = SUM + ABSA
                    191:                   WORK( I ) = WORK( I ) + ABSA
                    192:    50          CONTINUE
                    193:                WORK( J ) = SUM + ABS( A( J, J ) )
                    194:    60       CONTINUE
                    195:             DO 70 I = 1, N
1.11      bertrand  196:                SUM = WORK( I )
                    197:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  198:    70       CONTINUE
                    199:          ELSE
                    200:             DO 80 I = 1, N
                    201:                WORK( I ) = ZERO
                    202:    80       CONTINUE
                    203:             DO 100 J = 1, N
                    204:                SUM = WORK( J ) + ABS( A( J, J ) )
                    205:                DO 90 I = J + 1, N
                    206:                   ABSA = ABS( A( I, J ) )
                    207:                   SUM = SUM + ABSA
                    208:                   WORK( I ) = WORK( I ) + ABSA
                    209:    90          CONTINUE
1.11      bertrand  210:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  211:   100       CONTINUE
                    212:          END IF
                    213:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
                    214: *
                    215: *        Find normF(A).
                    216: *
1.20    ! bertrand  217:          SCALE = ZERO
        !           218:          SUM = ONE
1.1       bertrand  219:          IF( LSAME( UPLO, 'U' ) ) THEN
                    220:             DO 110 J = 2, N
1.20    ! bertrand  221:                CALL DLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
1.1       bertrand  222:   110       CONTINUE
                    223:          ELSE
                    224:             DO 120 J = 1, N - 1
1.20    ! bertrand  225:                CALL DLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
1.1       bertrand  226:   120       CONTINUE
                    227:          END IF
1.20    ! bertrand  228:          SUM = 2*SUM
        !           229:          CALL DLASSQ( N, A, LDA+1, SCALE, SUM )
        !           230:          VALUE = SCALE*SQRT( SUM )
1.1       bertrand  231:       END IF
                    232: *
                    233:       DLANSY = VALUE
                    234:       RETURN
                    235: *
                    236: *     End of DLANSY
                    237: *
                    238:       END

CVSweb interface <joel.bertrand@systella.fr>