File:  [local] / rpl / lapack / lapack / dlansb.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:45:59 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLANSB + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlansb.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlansb.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlansb.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION DLANSB( NORM, UPLO, N, K, AB, LDAB,
   22: *                        WORK )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          NORM, UPLO
   26: *       INTEGER            K, LDAB, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLANSB  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the element of  largest absolute value  of an
   40: *> n by n symmetric band matrix A,  with k super-diagonals.
   41: *> \endverbatim
   42: *>
   43: *> \return DLANSB
   44: *> \verbatim
   45: *>
   46: *>    DLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in DLANSB as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the upper or lower triangular part of the
   74: *>          band matrix A is supplied.
   75: *>          = 'U':  Upper triangular part is supplied
   76: *>          = 'L':  Lower triangular part is supplied
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix A.  N >= 0.  When N = 0, DLANSB is
   83: *>          set to zero.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] K
   87: *> \verbatim
   88: *>          K is INTEGER
   89: *>          The number of super-diagonals or sub-diagonals of the
   90: *>          band matrix A.  K >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] AB
   94: *> \verbatim
   95: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
   96: *>          The upper or lower triangle of the symmetric band matrix A,
   97: *>          stored in the first K+1 rows of AB.  The j-th column of A is
   98: *>          stored in the j-th column of the array AB as follows:
   99: *>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  100: *>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDAB
  104: *> \verbatim
  105: *>          LDAB is INTEGER
  106: *>          The leading dimension of the array AB.  LDAB >= K+1.
  107: *> \endverbatim
  108: *>
  109: *> \param[out] WORK
  110: *> \verbatim
  111: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  112: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  113: *>          WORK is not referenced.
  114: *> \endverbatim
  115: *
  116: *  Authors:
  117: *  ========
  118: *
  119: *> \author Univ. of Tennessee
  120: *> \author Univ. of California Berkeley
  121: *> \author Univ. of Colorado Denver
  122: *> \author NAG Ltd.
  123: *
  124: *> \date December 2016
  125: *
  126: *> \ingroup doubleOTHERauxiliary
  127: *
  128: *  =====================================================================
  129:       DOUBLE PRECISION FUNCTION DLANSB( NORM, UPLO, N, K, AB, LDAB,
  130:      $                 WORK )
  131: *
  132: *  -- LAPACK auxiliary routine (version 3.7.0) --
  133: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  134: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135: *     December 2016
  136: *
  137:       IMPLICIT NONE
  138: *     .. Scalar Arguments ..
  139:       CHARACTER          NORM, UPLO
  140:       INTEGER            K, LDAB, N
  141: *     ..
  142: *     .. Array Arguments ..
  143:       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
  144: *     ..
  145: *
  146: * =====================================================================
  147: *
  148: *     .. Parameters ..
  149:       DOUBLE PRECISION   ONE, ZERO
  150:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  151: *     ..
  152: *     .. Local Scalars ..
  153:       INTEGER            I, J, L
  154:       DOUBLE PRECISION   ABSA, SUM, VALUE
  155: *     ..
  156: *     .. Local Arrays ..
  157:       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
  158: *     ..
  159: *     .. External Functions ..
  160:       LOGICAL            LSAME, DISNAN
  161:       EXTERNAL           LSAME, DISNAN
  162: *     ..
  163: *     .. External Subroutines ..
  164:       EXTERNAL           DLASSQ, DCOMBSSQ
  165: *     ..
  166: *     .. Intrinsic Functions ..
  167:       INTRINSIC          ABS, MAX, MIN, SQRT
  168: *     ..
  169: *     .. Executable Statements ..
  170: *
  171:       IF( N.EQ.0 ) THEN
  172:          VALUE = ZERO
  173:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  174: *
  175: *        Find max(abs(A(i,j))).
  176: *
  177:          VALUE = ZERO
  178:          IF( LSAME( UPLO, 'U' ) ) THEN
  179:             DO 20 J = 1, N
  180:                DO 10 I = MAX( K+2-J, 1 ), K + 1
  181:                   SUM = ABS( AB( I, J ) )
  182:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  183:    10          CONTINUE
  184:    20       CONTINUE
  185:          ELSE
  186:             DO 40 J = 1, N
  187:                DO 30 I = 1, MIN( N+1-J, K+1 )
  188:                   SUM = ABS( AB( I, J ) )
  189:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  190:    30          CONTINUE
  191:    40       CONTINUE
  192:          END IF
  193:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  194:      $         ( NORM.EQ.'1' ) ) THEN
  195: *
  196: *        Find normI(A) ( = norm1(A), since A is symmetric).
  197: *
  198:          VALUE = ZERO
  199:          IF( LSAME( UPLO, 'U' ) ) THEN
  200:             DO 60 J = 1, N
  201:                SUM = ZERO
  202:                L = K + 1 - J
  203:                DO 50 I = MAX( 1, J-K ), J - 1
  204:                   ABSA = ABS( AB( L+I, J ) )
  205:                   SUM = SUM + ABSA
  206:                   WORK( I ) = WORK( I ) + ABSA
  207:    50          CONTINUE
  208:                WORK( J ) = SUM + ABS( AB( K+1, J ) )
  209:    60       CONTINUE
  210:             DO 70 I = 1, N
  211:                SUM = WORK( I )
  212:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  213:    70       CONTINUE
  214:          ELSE
  215:             DO 80 I = 1, N
  216:                WORK( I ) = ZERO
  217:    80       CONTINUE
  218:             DO 100 J = 1, N
  219:                SUM = WORK( J ) + ABS( AB( 1, J ) )
  220:                L = 1 - J
  221:                DO 90 I = J + 1, MIN( N, J+K )
  222:                   ABSA = ABS( AB( L+I, J ) )
  223:                   SUM = SUM + ABSA
  224:                   WORK( I ) = WORK( I ) + ABSA
  225:    90          CONTINUE
  226:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  227:   100       CONTINUE
  228:          END IF
  229:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  230: *
  231: *        Find normF(A).
  232: *        SSQ(1) is scale
  233: *        SSQ(2) is sum-of-squares
  234: *        For better accuracy, sum each column separately.
  235: *
  236:          SSQ( 1 ) = ZERO
  237:          SSQ( 2 ) = ONE
  238: *
  239: *        Sum off-diagonals
  240: *
  241:          IF( K.GT.0 ) THEN
  242:             IF( LSAME( UPLO, 'U' ) ) THEN
  243:                DO 110 J = 2, N
  244:                   COLSSQ( 1 ) = ZERO
  245:                   COLSSQ( 2 ) = ONE
  246:                   CALL DLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
  247:      $                         1, COLSSQ( 1 ), COLSSQ( 2 ) )
  248:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  249:   110          CONTINUE
  250:                L = K + 1
  251:             ELSE
  252:                DO 120 J = 1, N - 1
  253:                   COLSSQ( 1 ) = ZERO
  254:                   COLSSQ( 2 ) = ONE
  255:                   CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
  256:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  257:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  258:   120          CONTINUE
  259:                L = 1
  260:             END IF
  261:             SSQ( 2 ) = 2*SSQ( 2 )
  262:          ELSE
  263:             L = 1
  264:          END IF
  265: *
  266: *        Sum diagonal
  267: *
  268:          COLSSQ( 1 ) = ZERO
  269:          COLSSQ( 2 ) = ONE
  270:          CALL DLASSQ( N, AB( L, 1 ), LDAB, COLSSQ( 1 ), COLSSQ( 2 ) )
  271:          CALL DCOMBSSQ( SSQ, COLSSQ )
  272:          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  273:       END IF
  274: *
  275:       DLANSB = VALUE
  276:       RETURN
  277: *
  278: *     End of DLANSB
  279: *
  280:       END

CVSweb interface <joel.bertrand@systella.fr>