Annotation of rpl/lapack/lapack/dlanhs.f, revision 1.19

1.11      bertrand    1: *> \brief \b DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DLANHS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanhs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanhs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanhs.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
1.15      bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          NORM
                     25: *       INTEGER            LDA, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
                     29: *       ..
1.15      bertrand   30: *
1.8       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DLANHS  returns the value of the one norm,  or the Frobenius norm, or
                     38: *> the  infinity norm,  or the  element of  largest absolute value  of a
                     39: *> Hessenberg matrix A.
                     40: *> \endverbatim
                     41: *>
                     42: *> \return DLANHS
                     43: *> \verbatim
                     44: *>
                     45: *>    DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                     46: *>             (
                     47: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
                     48: *>             (
                     49: *>             ( normI(A),         NORM = 'I' or 'i'
                     50: *>             (
                     51: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
                     52: *>
                     53: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
                     54: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
                     55: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
                     56: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
                     57: *> \endverbatim
                     58: *
                     59: *  Arguments:
                     60: *  ==========
                     61: *
                     62: *> \param[in] NORM
                     63: *> \verbatim
                     64: *>          NORM is CHARACTER*1
                     65: *>          Specifies the value to be returned in DLANHS as described
                     66: *>          above.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] N
                     70: *> \verbatim
                     71: *>          N is INTEGER
                     72: *>          The order of the matrix A.  N >= 0.  When N = 0, DLANHS is
                     73: *>          set to zero.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] A
                     77: *> \verbatim
                     78: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     79: *>          The n by n upper Hessenberg matrix A; the part of A below the
                     80: *>          first sub-diagonal is not referenced.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] LDA
                     84: *> \verbatim
                     85: *>          LDA is INTEGER
                     86: *>          The leading dimension of the array A.  LDA >= max(N,1).
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[out] WORK
                     90: *> \verbatim
                     91: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
                     92: *>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
                     93: *>          referenced.
                     94: *> \endverbatim
                     95: *
                     96: *  Authors:
                     97: *  ========
                     98: *
1.15      bertrand   99: *> \author Univ. of Tennessee
                    100: *> \author Univ. of California Berkeley
                    101: *> \author Univ. of Colorado Denver
                    102: *> \author NAG Ltd.
1.8       bertrand  103: *
                    104: *> \ingroup doubleOTHERauxiliary
                    105: *
                    106: *  =====================================================================
1.1       bertrand  107:       DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
                    108: *
1.19    ! bertrand  109: *  -- LAPACK auxiliary routine --
1.1       bertrand  110: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    111: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    112: *
                    113: *     .. Scalar Arguments ..
                    114:       CHARACTER          NORM
                    115:       INTEGER            LDA, N
                    116: *     ..
                    117: *     .. Array Arguments ..
                    118:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
                    119: *     ..
                    120: *
                    121: * =====================================================================
                    122: *
                    123: *     .. Parameters ..
                    124:       DOUBLE PRECISION   ONE, ZERO
                    125:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    126: *     ..
                    127: *     .. Local Scalars ..
                    128:       INTEGER            I, J
1.19    ! bertrand  129:       DOUBLE PRECISION   SCALE, SUM, VALUE
1.1       bertrand  130: *     ..
1.19    ! bertrand  131: *     .. External Subroutines ..
        !           132:       EXTERNAL           DLASSQ
1.1       bertrand  133: *     ..
                    134: *     .. External Functions ..
1.11      bertrand  135:       LOGICAL            LSAME, DISNAN
                    136:       EXTERNAL           LSAME, DISNAN
1.1       bertrand  137: *     ..
                    138: *     .. Intrinsic Functions ..
1.11      bertrand  139:       INTRINSIC          ABS, MIN, SQRT
1.1       bertrand  140: *     ..
                    141: *     .. Executable Statements ..
                    142: *
                    143:       IF( N.EQ.0 ) THEN
                    144:          VALUE = ZERO
                    145:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
                    146: *
                    147: *        Find max(abs(A(i,j))).
                    148: *
                    149:          VALUE = ZERO
                    150:          DO 20 J = 1, N
                    151:             DO 10 I = 1, MIN( N, J+1 )
1.11      bertrand  152:                SUM = ABS( A( I, J ) )
                    153:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  154:    10       CONTINUE
                    155:    20    CONTINUE
                    156:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
                    157: *
                    158: *        Find norm1(A).
                    159: *
                    160:          VALUE = ZERO
                    161:          DO 40 J = 1, N
                    162:             SUM = ZERO
                    163:             DO 30 I = 1, MIN( N, J+1 )
                    164:                SUM = SUM + ABS( A( I, J ) )
                    165:    30       CONTINUE
1.11      bertrand  166:             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  167:    40    CONTINUE
                    168:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
                    169: *
                    170: *        Find normI(A).
                    171: *
                    172:          DO 50 I = 1, N
                    173:             WORK( I ) = ZERO
                    174:    50    CONTINUE
                    175:          DO 70 J = 1, N
                    176:             DO 60 I = 1, MIN( N, J+1 )
                    177:                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
                    178:    60       CONTINUE
                    179:    70    CONTINUE
                    180:          VALUE = ZERO
                    181:          DO 80 I = 1, N
1.11      bertrand  182:             SUM = WORK( I )
                    183:             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  184:    80    CONTINUE
                    185:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
                    186: *
                    187: *        Find normF(A).
                    188: *
1.19    ! bertrand  189:          SCALE = ZERO
        !           190:          SUM = ONE
1.1       bertrand  191:          DO 90 J = 1, N
1.19    ! bertrand  192:             CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM )
1.1       bertrand  193:    90    CONTINUE
1.19    ! bertrand  194:          VALUE = SCALE*SQRT( SUM )
1.1       bertrand  195:       END IF
                    196: *
                    197:       DLANHS = VALUE
                    198:       RETURN
                    199: *
                    200: *     End of DLANHS
                    201: *
                    202:       END

CVSweb interface <joel.bertrand@systella.fr>