Annotation of rpl/lapack/lapack/dlangt.f, revision 1.18

1.11      bertrand    1: *> \brief \b DLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DLANGT + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlangt.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlangt.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlangt.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       DOUBLE PRECISION FUNCTION DLANGT( NORM, N, DL, D, DU )
1.15      bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          NORM
                     25: *       INTEGER            N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   D( * ), DL( * ), DU( * )
                     29: *       ..
1.15      bertrand   30: *
1.8       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DLANGT  returns the value of the one norm,  or the Frobenius norm, or
                     38: *> the  infinity norm,  or the  element of  largest absolute value  of a
                     39: *> real tridiagonal matrix A.
                     40: *> \endverbatim
                     41: *>
                     42: *> \return DLANGT
                     43: *> \verbatim
                     44: *>
                     45: *>    DLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                     46: *>             (
                     47: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
                     48: *>             (
                     49: *>             ( normI(A),         NORM = 'I' or 'i'
                     50: *>             (
                     51: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
                     52: *>
                     53: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
                     54: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
                     55: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
                     56: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
                     57: *> \endverbatim
                     58: *
                     59: *  Arguments:
                     60: *  ==========
                     61: *
                     62: *> \param[in] NORM
                     63: *> \verbatim
                     64: *>          NORM is CHARACTER*1
                     65: *>          Specifies the value to be returned in DLANGT as described
                     66: *>          above.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] N
                     70: *> \verbatim
                     71: *>          N is INTEGER
                     72: *>          The order of the matrix A.  N >= 0.  When N = 0, DLANGT is
                     73: *>          set to zero.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] DL
                     77: *> \verbatim
                     78: *>          DL is DOUBLE PRECISION array, dimension (N-1)
                     79: *>          The (n-1) sub-diagonal elements of A.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] D
                     83: *> \verbatim
                     84: *>          D is DOUBLE PRECISION array, dimension (N)
                     85: *>          The diagonal elements of A.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] DU
                     89: *> \verbatim
                     90: *>          DU is DOUBLE PRECISION array, dimension (N-1)
                     91: *>          The (n-1) super-diagonal elements of A.
                     92: *> \endverbatim
                     93: *
                     94: *  Authors:
                     95: *  ========
                     96: *
1.15      bertrand   97: *> \author Univ. of Tennessee
                     98: *> \author Univ. of California Berkeley
                     99: *> \author Univ. of Colorado Denver
                    100: *> \author NAG Ltd.
1.8       bertrand  101: *
                    102: *> \ingroup doubleOTHERauxiliary
                    103: *
                    104: *  =====================================================================
1.1       bertrand  105:       DOUBLE PRECISION FUNCTION DLANGT( NORM, N, DL, D, DU )
                    106: *
1.18    ! bertrand  107: *  -- LAPACK auxiliary routine --
1.1       bertrand  108: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    109: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    110: *
                    111: *     .. Scalar Arguments ..
                    112:       CHARACTER          NORM
                    113:       INTEGER            N
                    114: *     ..
                    115: *     .. Array Arguments ..
                    116:       DOUBLE PRECISION   D( * ), DL( * ), DU( * )
                    117: *     ..
                    118: *
                    119: *  =====================================================================
                    120: *
                    121: *     .. Parameters ..
                    122:       DOUBLE PRECISION   ONE, ZERO
                    123:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    124: *     ..
                    125: *     .. Local Scalars ..
                    126:       INTEGER            I
1.11      bertrand  127:       DOUBLE PRECISION   ANORM, SCALE, SUM, TEMP
1.1       bertrand  128: *     ..
                    129: *     .. External Functions ..
1.11      bertrand  130:       LOGICAL            LSAME, DISNAN
                    131:       EXTERNAL           LSAME, DISNAN
1.1       bertrand  132: *     ..
                    133: *     .. External Subroutines ..
                    134:       EXTERNAL           DLASSQ
                    135: *     ..
                    136: *     .. Intrinsic Functions ..
1.11      bertrand  137:       INTRINSIC          ABS, SQRT
1.1       bertrand  138: *     ..
                    139: *     .. Executable Statements ..
                    140: *
                    141:       IF( N.LE.0 ) THEN
                    142:          ANORM = ZERO
                    143:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
                    144: *
                    145: *        Find max(abs(A(i,j))).
                    146: *
                    147:          ANORM = ABS( D( N ) )
                    148:          DO 10 I = 1, N - 1
1.15      bertrand  149:             IF( ANORM.LT.ABS( DL( I ) ) .OR. DISNAN( ABS( DL( I ) ) ) )
1.11      bertrand  150:      $           ANORM = ABS(DL(I))
1.15      bertrand  151:             IF( ANORM.LT.ABS( D( I ) ) .OR. DISNAN( ABS( D( I ) ) ) )
1.11      bertrand  152:      $           ANORM = ABS(D(I))
1.15      bertrand  153:             IF( ANORM.LT.ABS( DU( I ) ) .OR. DISNAN (ABS( DU( I ) ) ) )
1.11      bertrand  154:      $           ANORM = ABS(DU(I))
1.1       bertrand  155:    10    CONTINUE
                    156:       ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
                    157: *
                    158: *        Find norm1(A).
                    159: *
                    160:          IF( N.EQ.1 ) THEN
                    161:             ANORM = ABS( D( 1 ) )
                    162:          ELSE
1.11      bertrand  163:             ANORM = ABS( D( 1 ) )+ABS( DL( 1 ) )
1.15      bertrand  164:             TEMP = ABS( D( N ) )+ABS( DU( N-1 ) )
1.11      bertrand  165:             IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
1.1       bertrand  166:             DO 20 I = 2, N - 1
1.11      bertrand  167:                TEMP = ABS( D( I ) )+ABS( DL( I ) )+ABS( DU( I-1 ) )
                    168:                IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
1.1       bertrand  169:    20       CONTINUE
                    170:          END IF
                    171:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
                    172: *
                    173: *        Find normI(A).
                    174: *
                    175:          IF( N.EQ.1 ) THEN
                    176:             ANORM = ABS( D( 1 ) )
                    177:          ELSE
1.11      bertrand  178:             ANORM = ABS( D( 1 ) )+ABS( DU( 1 ) )
                    179:             TEMP = ABS( D( N ) )+ABS( DL( N-1 ) )
                    180:             IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
1.1       bertrand  181:             DO 30 I = 2, N - 1
1.11      bertrand  182:                TEMP = ABS( D( I ) )+ABS( DU( I ) )+ABS( DL( I-1 ) )
                    183:                IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
1.1       bertrand  184:    30       CONTINUE
                    185:          END IF
                    186:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
                    187: *
                    188: *        Find normF(A).
                    189: *
                    190:          SCALE = ZERO
                    191:          SUM = ONE
                    192:          CALL DLASSQ( N, D, 1, SCALE, SUM )
                    193:          IF( N.GT.1 ) THEN
                    194:             CALL DLASSQ( N-1, DL, 1, SCALE, SUM )
                    195:             CALL DLASSQ( N-1, DU, 1, SCALE, SUM )
                    196:          END IF
                    197:          ANORM = SCALE*SQRT( SUM )
                    198:       END IF
                    199: *
                    200:       DLANGT = ANORM
                    201:       RETURN
                    202: *
                    203: *     End of DLANGT
                    204: *
                    205:       END

CVSweb interface <joel.bertrand@systella.fr>