Annotation of rpl/lapack/lapack/dlangb.f, revision 1.19

1.11      bertrand    1: *> \brief \b DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DLANGB + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlangb.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlangb.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlangb.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
                     22: *                        WORK )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          NORM
                     26: *       INTEGER            KL, KU, LDAB, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
                     30: *       ..
1.15      bertrand   31: *
1.8       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DLANGB  returns the value of the one norm,  or the Frobenius norm, or
                     39: *> the  infinity norm,  or the element of  largest absolute value  of an
                     40: *> n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.
                     41: *> \endverbatim
                     42: *>
                     43: *> \return DLANGB
                     44: *> \verbatim
                     45: *>
                     46: *>    DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                     47: *>             (
                     48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
                     49: *>             (
                     50: *>             ( normI(A),         NORM = 'I' or 'i'
                     51: *>             (
                     52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
                     53: *>
                     54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
                     55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
                     56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
                     57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
                     58: *> \endverbatim
                     59: *
                     60: *  Arguments:
                     61: *  ==========
                     62: *
                     63: *> \param[in] NORM
                     64: *> \verbatim
                     65: *>          NORM is CHARACTER*1
                     66: *>          Specifies the value to be returned in DLANGB as described
                     67: *>          above.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] N
                     71: *> \verbatim
                     72: *>          N is INTEGER
                     73: *>          The order of the matrix A.  N >= 0.  When N = 0, DLANGB is
                     74: *>          set to zero.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] KL
                     78: *> \verbatim
                     79: *>          KL is INTEGER
                     80: *>          The number of sub-diagonals of the matrix A.  KL >= 0.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] KU
                     84: *> \verbatim
                     85: *>          KU is INTEGER
                     86: *>          The number of super-diagonals of the matrix A.  KU >= 0.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] AB
                     90: *> \verbatim
                     91: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
                     92: *>          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th
                     93: *>          column of A is stored in the j-th column of the array AB as
                     94: *>          follows:
                     95: *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] LDAB
                     99: *> \verbatim
                    100: *>          LDAB is INTEGER
                    101: *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[out] WORK
                    105: *> \verbatim
                    106: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
                    107: *>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
                    108: *>          referenced.
                    109: *> \endverbatim
                    110: *
                    111: *  Authors:
                    112: *  ========
                    113: *
1.15      bertrand  114: *> \author Univ. of Tennessee
                    115: *> \author Univ. of California Berkeley
                    116: *> \author Univ. of Colorado Denver
                    117: *> \author NAG Ltd.
1.8       bertrand  118: *
                    119: *> \ingroup doubleGBauxiliary
                    120: *
                    121: *  =====================================================================
1.1       bertrand  122:       DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
                    123:      $                 WORK )
                    124: *
1.19    ! bertrand  125: *  -- LAPACK auxiliary routine --
1.1       bertrand  126: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    127: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    128: *
                    129: *     .. Scalar Arguments ..
                    130:       CHARACTER          NORM
                    131:       INTEGER            KL, KU, LDAB, N
                    132: *     ..
                    133: *     .. Array Arguments ..
                    134:       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
                    135: *     ..
                    136: *
                    137: * =====================================================================
                    138: *
1.19    ! bertrand  139: *
1.1       bertrand  140: *     .. Parameters ..
                    141:       DOUBLE PRECISION   ONE, ZERO
                    142:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    143: *     ..
                    144: *     .. Local Scalars ..
                    145:       INTEGER            I, J, K, L
1.19    ! bertrand  146:       DOUBLE PRECISION   SCALE, SUM, VALUE, TEMP
1.1       bertrand  147: *     ..
1.19    ! bertrand  148: *     .. External Subroutines ..
        !           149:       EXTERNAL           DLASSQ
1.1       bertrand  150: *     ..
                    151: *     .. External Functions ..
1.11      bertrand  152:       LOGICAL            LSAME, DISNAN
                    153:       EXTERNAL           LSAME, DISNAN
1.1       bertrand  154: *     ..
                    155: *     .. Intrinsic Functions ..
                    156:       INTRINSIC          ABS, MAX, MIN, SQRT
                    157: *     ..
                    158: *     .. Executable Statements ..
                    159: *
                    160:       IF( N.EQ.0 ) THEN
                    161:          VALUE = ZERO
                    162:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
                    163: *
                    164: *        Find max(abs(A(i,j))).
                    165: *
                    166:          VALUE = ZERO
                    167:          DO 20 J = 1, N
                    168:             DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
1.11      bertrand  169:                TEMP = ABS( AB( I, J ) )
                    170:                IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
1.1       bertrand  171:    10       CONTINUE
                    172:    20    CONTINUE
                    173:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
                    174: *
                    175: *        Find norm1(A).
                    176: *
                    177:          VALUE = ZERO
                    178:          DO 40 J = 1, N
                    179:             SUM = ZERO
                    180:             DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
                    181:                SUM = SUM + ABS( AB( I, J ) )
                    182:    30       CONTINUE
1.11      bertrand  183:             IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  184:    40    CONTINUE
                    185:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
                    186: *
                    187: *        Find normI(A).
                    188: *
                    189:          DO 50 I = 1, N
                    190:             WORK( I ) = ZERO
                    191:    50    CONTINUE
                    192:          DO 70 J = 1, N
                    193:             K = KU + 1 - J
                    194:             DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
                    195:                WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
                    196:    60       CONTINUE
                    197:    70    CONTINUE
                    198:          VALUE = ZERO
                    199:          DO 80 I = 1, N
1.11      bertrand  200:             TEMP = WORK( I )
                    201:             IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
1.1       bertrand  202:    80    CONTINUE
                    203:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
                    204: *
                    205: *        Find normF(A).
                    206: *
1.19    ! bertrand  207:          SCALE = ZERO
        !           208:          SUM = ONE
1.1       bertrand  209:          DO 90 J = 1, N
                    210:             L = MAX( 1, J-KU )
                    211:             K = KU + 1 - J + L
1.19    ! bertrand  212:             CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
1.1       bertrand  213:    90    CONTINUE
1.19    ! bertrand  214:          VALUE = SCALE*SQRT( SUM )
1.1       bertrand  215:       END IF
                    216: *
                    217:       DLANGB = VALUE
                    218:       RETURN
                    219: *
                    220: *     End of DLANGB
                    221: *
                    222:       END

CVSweb interface <joel.bertrand@systella.fr>