--- rpl/lapack/lapack/dlaneg.f 2010/08/06 15:32:27 1.4
+++ rpl/lapack/lapack/dlaneg.f 2023/08/07 08:38:54 1.19
@@ -1,11 +1,124 @@
- FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R )
- IMPLICIT NONE
- INTEGER DLANEG
+*> \brief \b DLANEG computes the Sturm count.
*
-* -- LAPACK auxiliary routine (version 3.2) --
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DLANEG + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R )
+*
+* .. Scalar Arguments ..
+* INTEGER N, R
+* DOUBLE PRECISION PIVMIN, SIGMA
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION D( * ), LLD( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DLANEG computes the Sturm count, the number of negative pivots
+*> encountered while factoring tridiagonal T - sigma I = L D L^T.
+*> This implementation works directly on the factors without forming
+*> the tridiagonal matrix T. The Sturm count is also the number of
+*> eigenvalues of T less than sigma.
+*>
+*> This routine is called from DLARRB.
+*>
+*> The current routine does not use the PIVMIN parameter but rather
+*> requires IEEE-754 propagation of Infinities and NaNs. This
+*> routine also has no input range restrictions but does require
+*> default exception handling such that x/0 produces Inf when x is
+*> non-zero, and Inf/Inf produces NaN. For more information, see:
+*>
+*> Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in
+*> Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on
+*> Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624
+*> (Tech report version in LAWN 172 with the same title.)
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix.
+*> \endverbatim
+*>
+*> \param[in] D
+*> \verbatim
+*> D is DOUBLE PRECISION array, dimension (N)
+*> The N diagonal elements of the diagonal matrix D.
+*> \endverbatim
+*>
+*> \param[in] LLD
+*> \verbatim
+*> LLD is DOUBLE PRECISION array, dimension (N-1)
+*> The (N-1) elements L(i)*L(i)*D(i).
+*> \endverbatim
+*>
+*> \param[in] SIGMA
+*> \verbatim
+*> SIGMA is DOUBLE PRECISION
+*> Shift amount in T - sigma I = L D L^T.
+*> \endverbatim
+*>
+*> \param[in] PIVMIN
+*> \verbatim
+*> PIVMIN is DOUBLE PRECISION
+*> The minimum pivot in the Sturm sequence. May be used
+*> when zero pivots are encountered on non-IEEE-754
+*> architectures.
+*> \endverbatim
+*>
+*> \param[in] R
+*> \verbatim
+*> R is INTEGER
+*> The twist index for the twisted factorization that is used
+*> for the negcount.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup OTHERauxiliary
+*
+*> \par Contributors:
+* ==================
+*>
+*> Osni Marques, LBNL/NERSC, USA \n
+*> Christof Voemel, University of California, Berkeley, USA \n
+*> Jason Riedy, University of California, Berkeley, USA \n
+*>
+* =====================================================================
+ INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R )
+*
+* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
*
* .. Scalar Arguments ..
INTEGER N, R
@@ -15,60 +128,6 @@
DOUBLE PRECISION D( * ), LLD( * )
* ..
*
-* Purpose
-* =======
-*
-* DLANEG computes the Sturm count, the number of negative pivots
-* encountered while factoring tridiagonal T - sigma I = L D L^T.
-* This implementation works directly on the factors without forming
-* the tridiagonal matrix T. The Sturm count is also the number of
-* eigenvalues of T less than sigma.
-*
-* This routine is called from DLARRB.
-*
-* The current routine does not use the PIVMIN parameter but rather
-* requires IEEE-754 propagation of Infinities and NaNs. This
-* routine also has no input range restrictions but does require
-* default exception handling such that x/0 produces Inf when x is
-* non-zero, and Inf/Inf produces NaN. For more information, see:
-*
-* Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in
-* Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on
-* Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624
-* (Tech report version in LAWN 172 with the same title.)
-*
-* Arguments
-* =========
-*
-* N (input) INTEGER
-* The order of the matrix.
-*
-* D (input) DOUBLE PRECISION array, dimension (N)
-* The N diagonal elements of the diagonal matrix D.
-*
-* LLD (input) DOUBLE PRECISION array, dimension (N-1)
-* The (N-1) elements L(i)*L(i)*D(i).
-*
-* SIGMA (input) DOUBLE PRECISION
-* Shift amount in T - sigma I = L D L^T.
-*
-* PIVMIN (input) DOUBLE PRECISION
-* The minimum pivot in the Sturm sequence. May be used
-* when zero pivots are encountered on non-IEEE-754
-* architectures.
-*
-* R (input) INTEGER
-* The twist index for the twisted factorization that is used
-* for the negcount.
-*
-* Further Details
-* ===============
-*
-* Based on contributions by
-* Osni Marques, LBNL/NERSC, USA
-* Christof Voemel, University of California, Berkeley, USA
-* Jason Riedy, University of California, Berkeley, USA
-*
* =====================================================================
*
* .. Parameters ..