File:  [local] / rpl / lapack / lapack / dlamswlq.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:54 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAMSWLQ
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *      SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
    7: *     $                LDT, C, LDC, WORK, LWORK, INFO )
    8: *
    9: *
   10: *     .. Scalar Arguments ..
   11: *      CHARACTER         SIDE, TRANS
   12: *      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
   13: *     ..
   14: *     .. Array Arguments ..
   15: *      DOUBLE        A( LDA, * ), WORK( * ), C(LDC, * ),
   16: *     $                  T( LDT, * )
   17: *> \par Purpose:
   18: *  =============
   19: *>
   20: *> \verbatim
   21: *>
   22: *>    DLAMSWLQ overwrites the general real M-by-N matrix C with
   23: *>
   24: *>
   25: *>                    SIDE = 'L'     SIDE = 'R'
   26: *>    TRANS = 'N':      Q * C          C * Q
   27: *>    TRANS = 'T':      Q**T * C       C * Q**T
   28: *>    where Q is a real orthogonal matrix defined as the product of blocked
   29: *>    elementary reflectors computed by short wide LQ
   30: *>    factorization (DLASWLQ)
   31: *> \endverbatim
   32: *
   33: *  Arguments:
   34: *  ==========
   35: *
   36: *> \param[in] SIDE
   37: *> \verbatim
   38: *>          SIDE is CHARACTER*1
   39: *>          = 'L': apply Q or Q**T from the Left;
   40: *>          = 'R': apply Q or Q**T from the Right.
   41: *> \endverbatim
   42: *>
   43: *> \param[in] TRANS
   44: *> \verbatim
   45: *>          TRANS is CHARACTER*1
   46: *>          = 'N':  No transpose, apply Q;
   47: *>          = 'T':  Transpose, apply Q**T.
   48: *> \endverbatim
   49: *>
   50: *> \param[in] M
   51: *> \verbatim
   52: *>          M is INTEGER
   53: *>          The number of rows of the matrix C.  M >=0.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The number of columns of the matrix C. N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] K
   63: *> \verbatim
   64: *>          K is INTEGER
   65: *>          The number of elementary reflectors whose product defines
   66: *>          the matrix Q.
   67: *>          M >= K >= 0;
   68: *>
   69: *> \endverbatim
   70: *> \param[in] MB
   71: *> \verbatim
   72: *>          MB is INTEGER
   73: *>          The row block size to be used in the blocked LQ.
   74: *>          M >= MB >= 1
   75: *> \endverbatim
   76: *>
   77: *> \param[in] NB
   78: *> \verbatim
   79: *>          NB is INTEGER
   80: *>          The column block size to be used in the blocked LQ.
   81: *>          NB > M.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] A
   85: *> \verbatim
   86: *>          A is DOUBLE PRECISION array, dimension
   87: *>                               (LDA,M) if SIDE = 'L',
   88: *>                               (LDA,N) if SIDE = 'R'
   89: *>          The i-th row must contain the vector which defines the blocked
   90: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
   91: *>          DLASWLQ in the first k rows of its array argument A.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDA
   95: *> \verbatim
   96: *>          LDA is INTEGER
   97: *>          The leading dimension of the array A. LDA >= max(1,K).
   98: *> \endverbatim
   99: *>
  100: *> \param[in] T
  101: *> \verbatim
  102: *>          T is DOUBLE PRECISION array, dimension
  103: *>          ( M * Number of blocks(CEIL(N-K/NB-K)),
  104: *>          The blocked upper triangular block reflectors stored in compact form
  105: *>          as a sequence of upper triangular blocks.  See below
  106: *>          for further details.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] LDT
  110: *> \verbatim
  111: *>          LDT is INTEGER
  112: *>          The leading dimension of the array T.  LDT >= MB.
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] C
  116: *> \verbatim
  117: *>          C is DOUBLE PRECISION array, dimension (LDC,N)
  118: *>          On entry, the M-by-N matrix C.
  119: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] LDC
  123: *> \verbatim
  124: *>          LDC is INTEGER
  125: *>          The leading dimension of the array C. LDC >= max(1,M).
  126: *> \endverbatim
  127: *>
  128: *> \param[out] WORK
  129: *> \verbatim
  130: *>         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LWORK
  134: *> \verbatim
  135: *>          LWORK is INTEGER
  136: *>          The dimension of the array WORK.
  137: *>          If SIDE = 'L', LWORK >= max(1,NB) * MB;
  138: *>          if SIDE = 'R', LWORK >= max(1,M) * MB.
  139: *>          If LWORK = -1, then a workspace query is assumed; the routine
  140: *>          only calculates the optimal size of the WORK array, returns
  141: *>          this value as the first entry of the WORK array, and no error
  142: *>          message related to LWORK is issued by XERBLA.
  143: *> \endverbatim
  144: *>
  145: *> \param[out] INFO
  146: *> \verbatim
  147: *>          INFO is INTEGER
  148: *>          = 0:  successful exit
  149: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  150: *> \endverbatim
  151: *
  152: *  Authors:
  153: *  ========
  154: *
  155: *> \author Univ. of Tennessee
  156: *> \author Univ. of California Berkeley
  157: *> \author Univ. of Colorado Denver
  158: *> \author NAG Ltd.
  159: *
  160: *> \par Further Details:
  161: *  =====================
  162: *>
  163: *> \verbatim
  164: *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
  165: *> representing Q as a product of other orthogonal matrices
  166: *>   Q = Q(1) * Q(2) * . . . * Q(k)
  167: *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
  168: *>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
  169: *>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
  170: *>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
  171: *>   . . .
  172: *>
  173: *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
  174: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  175: *> block reflectors, stored in array T(1:LDT,1:N).
  176: *> For more information see Further Details in GELQT.
  177: *>
  178: *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
  179: *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
  180: *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
  181: *> The last Q(k) may use fewer rows.
  182: *> For more information see Further Details in TPLQT.
  183: *>
  184: *> For more details of the overall algorithm, see the description of
  185: *> Sequential TSQR in Section 2.2 of [1].
  186: *>
  187: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  188: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  189: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  190: *> \endverbatim
  191: *>
  192: *  =====================================================================
  193:       SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  194:      $    LDT, C, LDC, WORK, LWORK, INFO )
  195: *
  196: *  -- LAPACK computational routine --
  197: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  198: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  199: *
  200: *     .. Scalar Arguments ..
  201:       CHARACTER         SIDE, TRANS
  202:       INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  203: *     ..
  204: *     .. Array Arguments ..
  205:       DOUBLE PRECISION A( LDA, * ), WORK( * ), C(LDC, * ),
  206:      $      T( LDT, * )
  207: *     ..
  208: *
  209: * =====================================================================
  210: *
  211: *     ..
  212: *     .. Local Scalars ..
  213:       LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  214:       INTEGER    I, II, KK, CTR, LW
  215: *     ..
  216: *     .. External Functions ..
  217:       LOGICAL            LSAME
  218:       EXTERNAL           LSAME
  219: *     .. External Subroutines ..
  220:       EXTERNAL           DTPMLQT, DGEMLQT, XERBLA
  221: *     ..
  222: *     .. Executable Statements ..
  223: *
  224: *     Test the input arguments
  225: *
  226:       LQUERY  = LWORK.LT.0
  227:       NOTRAN  = LSAME( TRANS, 'N' )
  228:       TRAN    = LSAME( TRANS, 'T' )
  229:       LEFT    = LSAME( SIDE, 'L' )
  230:       RIGHT   = LSAME( SIDE, 'R' )
  231:       IF (LEFT) THEN
  232:         LW = N * MB
  233:       ELSE
  234:         LW = M * MB
  235:       END IF
  236: *
  237:       INFO = 0
  238:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  239:          INFO = -1
  240:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  241:          INFO = -2
  242:       ELSE IF( K.LT.0 ) THEN
  243:         INFO = -5
  244:       ELSE IF( M.LT.K ) THEN
  245:         INFO = -3
  246:       ELSE IF( N.LT.0 ) THEN
  247:         INFO = -4
  248:       ELSE IF( K.LT.MB .OR. MB.LT.1) THEN
  249:         INFO = -6
  250:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  251:         INFO = -9
  252:       ELSE IF( LDT.LT.MAX( 1, MB) ) THEN
  253:         INFO = -11
  254:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  255:          INFO = -13
  256:       ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
  257:         INFO = -15
  258:       END IF
  259: *
  260:       IF( INFO.NE.0 ) THEN
  261:         CALL XERBLA( 'DLAMSWLQ', -INFO )
  262:         WORK(1) = LW
  263:         RETURN
  264:       ELSE IF (LQUERY) THEN
  265:         WORK(1) = LW
  266:         RETURN
  267:       END IF
  268: *
  269: *     Quick return if possible
  270: *
  271:       IF( MIN(M,N,K).EQ.0 ) THEN
  272:         RETURN
  273:       END IF
  274: *
  275:       IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN
  276:         CALL DGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
  277:      $        T, LDT, C, LDC, WORK, INFO)
  278:         RETURN
  279:       END IF
  280: *
  281:       IF(LEFT.AND.TRAN) THEN
  282: *
  283: *         Multiply Q to the last block of C
  284: *
  285:           KK = MOD((M-K),(NB-K))
  286:           CTR = (M-K)/(NB-K)
  287:           IF (KK.GT.0) THEN
  288:             II=M-KK+1
  289:             CALL DTPMLQT('L','T',KK , N, K, 0, MB, A(1,II), LDA,
  290:      $        T(1,CTR*K+1), LDT, C(1,1), LDC,
  291:      $        C(II,1), LDC, WORK, INFO )
  292:           ELSE
  293:             II=M+1
  294:           END IF
  295: *
  296:           DO I=II-(NB-K),NB+1,-(NB-K)
  297: *
  298: *         Multiply Q to the current block of C (1:M,I:I+NB)
  299: *
  300:             CTR = CTR - 1
  301:             CALL DTPMLQT('L','T',NB-K , N, K, 0,MB, A(1,I), LDA,
  302:      $          T(1, CTR*K+1),LDT, C(1,1), LDC,
  303:      $          C(I,1), LDC, WORK, INFO )
  304: 
  305:           END DO
  306: *
  307: *         Multiply Q to the first block of C (1:M,1:NB)
  308: *
  309:           CALL DGEMLQT('L','T',NB , N, K, MB, A(1,1), LDA, T
  310:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
  311: *
  312:       ELSE IF (LEFT.AND.NOTRAN) THEN
  313: *
  314: *         Multiply Q to the first block of C
  315: *
  316:          KK = MOD((M-K),(NB-K))
  317:          II=M-KK+1
  318:          CTR = 1
  319:          CALL DGEMLQT('L','N',NB , N, K, MB, A(1,1), LDA, T
  320:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
  321: *
  322:          DO I=NB+1,II-NB+K,(NB-K)
  323: *
  324: *         Multiply Q to the current block of C (I:I+NB,1:N)
  325: *
  326:           CALL DTPMLQT('L','N',NB-K , N, K, 0,MB, A(1,I), LDA,
  327:      $         T(1,CTR*K+1), LDT, C(1,1), LDC,
  328:      $         C(I,1), LDC, WORK, INFO )
  329:           CTR = CTR + 1
  330: *
  331:          END DO
  332:          IF(II.LE.M) THEN
  333: *
  334: *         Multiply Q to the last block of C
  335: *
  336:           CALL DTPMLQT('L','N',KK , N, K, 0, MB, A(1,II), LDA,
  337:      $        T(1,CTR*K+1), LDT, C(1,1), LDC,
  338:      $        C(II,1), LDC, WORK, INFO )
  339: *
  340:          END IF
  341: *
  342:       ELSE IF(RIGHT.AND.NOTRAN) THEN
  343: *
  344: *         Multiply Q to the last block of C
  345: *
  346:           KK = MOD((N-K),(NB-K))
  347:           CTR = (N-K)/(NB-K)
  348:           IF (KK.GT.0) THEN
  349:             II=N-KK+1
  350:             CALL DTPMLQT('R','N',M , KK, K, 0, MB, A(1, II), LDA,
  351:      $        T(1,CTR *K+1), LDT, C(1,1), LDC,
  352:      $        C(1,II), LDC, WORK, INFO )
  353:           ELSE
  354:             II=N+1
  355:           END IF
  356: *
  357:           DO I=II-(NB-K),NB+1,-(NB-K)
  358: *
  359: *         Multiply Q to the current block of C (1:M,I:I+MB)
  360: *
  361:              CTR = CTR - 1
  362:              CALL DTPMLQT('R','N', M, NB-K, K, 0, MB, A(1, I), LDA,
  363:      $        T(1,CTR*K+1), LDT, C(1,1), LDC,
  364:      $        C(1,I), LDC, WORK, INFO )
  365: *
  366:           END DO
  367: *
  368: *         Multiply Q to the first block of C (1:M,1:MB)
  369: *
  370:           CALL DGEMLQT('R','N',M , NB, K, MB, A(1,1), LDA, T
  371:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
  372: *
  373:       ELSE IF (RIGHT.AND.TRAN) THEN
  374: *
  375: *       Multiply Q to the first block of C
  376: *
  377:          KK = MOD((N-K),(NB-K))
  378:          CTR = 1
  379:          II=N-KK+1
  380:          CALL DGEMLQT('R','T',M , NB, K, MB, A(1,1), LDA, T
  381:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
  382: *
  383:          DO I=NB+1,II-NB+K,(NB-K)
  384: *
  385: *         Multiply Q to the current block of C (1:M,I:I+MB)
  386: *
  387:           CALL DTPMLQT('R','T',M , NB-K, K, 0,MB, A(1,I), LDA,
  388:      $       T(1,CTR*K+1), LDT, C(1,1), LDC,
  389:      $       C(1,I), LDC, WORK, INFO )
  390:           CTR = CTR + 1
  391: *
  392:          END DO
  393:          IF(II.LE.N) THEN
  394: *
  395: *       Multiply Q to the last block of C
  396: *
  397:           CALL DTPMLQT('R','T',M , KK, K, 0,MB, A(1,II), LDA,
  398:      $      T(1,CTR*K+1),LDT, C(1,1), LDC,
  399:      $      C(1,II), LDC, WORK, INFO )
  400: *
  401:          END IF
  402: *
  403:       END IF
  404: *
  405:       WORK(1) = LW
  406:       RETURN
  407: *
  408: *     End of DLAMSWLQ
  409: *
  410:       END

CVSweb interface <joel.bertrand@systella.fr>