Annotation of rpl/lapack/lapack/dlamswlq.f, revision 1.4

1.1       bertrand    1: *
                      2: *  Definition:
                      3: *  ===========
                      4: *
                      5: *      SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
                      6: *     $                LDT, C, LDC, WORK, LWORK, INFO )
                      7: *
                      8: *
                      9: *     .. Scalar Arguments ..
                     10: *      CHARACTER         SIDE, TRANS
                     11: *      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14: *      DOUBLE        A( LDA, * ), WORK( * ), C(LDC, * ),
                     15: *     $                  T( LDT, * )
                     16: *> \par Purpose:
                     17: *  =============
                     18: *>
                     19: *> \verbatim
                     20: *>
                     21: *>    DLAMQRTS overwrites the general real M-by-N matrix C with
                     22: *>
                     23: *>
                     24: *>                    SIDE = 'L'     SIDE = 'R'
                     25: *>    TRANS = 'N':      Q * C          C * Q
                     26: *>    TRANS = 'T':      Q**T * C       C * Q**T
                     27: *>    where Q is a real orthogonal matrix defined as the product of blocked
                     28: *>    elementary reflectors computed by short wide LQ
                     29: *>    factorization (DLASWLQ)
                     30: *> \endverbatim
                     31: *
                     32: *  Arguments:
                     33: *  ==========
                     34: *
                     35: *> \param[in] SIDE
                     36: *> \verbatim
                     37: *>          SIDE is CHARACTER*1
                     38: *>          = 'L': apply Q or Q**T from the Left;
                     39: *>          = 'R': apply Q or Q**T from the Right.
                     40: *> \endverbatim
                     41: *>
                     42: *> \param[in] TRANS
                     43: *> \verbatim
                     44: *>          TRANS is CHARACTER*1
                     45: *>          = 'N':  No transpose, apply Q;
                     46: *>          = 'T':  Transpose, apply Q**T.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] M
                     50: *> \verbatim
                     51: *>          M is INTEGER
1.3       bertrand   52: *>          The number of rows of the matrix C.  M >=0.
1.1       bertrand   53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>          The number of columns of the matrix C. N >= M.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] K
                     62: *> \verbatim
                     63: *>          K is INTEGER
                     64: *>          The number of elementary reflectors whose product defines
                     65: *>          the matrix Q.
                     66: *>          M >= K >= 0;
                     67: *>
                     68: *> \endverbatim
                     69: *> \param[in] MB
                     70: *> \verbatim
                     71: *>          MB is INTEGER
                     72: *>          The row block size to be used in the blocked QR.
                     73: *>          M >= MB >= 1
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] NB
                     77: *> \verbatim
                     78: *>          NB is INTEGER
                     79: *>          The column block size to be used in the blocked QR.
                     80: *>          NB > M.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] NB
                     84: *> \verbatim
                     85: *>          NB is INTEGER
                     86: *>          The block size to be used in the blocked QR.
                     87: *>                MB > M.
                     88: *>
                     89: *> \endverbatim
                     90: *>
1.3       bertrand   91: *> \param[in] A
1.1       bertrand   92: *> \verbatim
1.3       bertrand   93: *>          A is DOUBLE PRECISION array, dimension
                     94: *>                               (LDA,M) if SIDE = 'L',
                     95: *>                               (LDA,N) if SIDE = 'R'
1.1       bertrand   96: *>          The i-th row must contain the vector which defines the blocked
                     97: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
                     98: *>          DLASWLQ in the first k rows of its array argument A.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] LDA
                    102: *> \verbatim
                    103: *>          LDA is INTEGER
                    104: *>          The leading dimension of the array A.
                    105: *>          If SIDE = 'L', LDA >= max(1,M);
                    106: *>          if SIDE = 'R', LDA >= max(1,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] T
                    110: *> \verbatim
                    111: *>          T is DOUBLE PRECISION array, dimension
                    112: *>          ( M * Number of blocks(CEIL(N-K/NB-K)),
                    113: *>          The blocked upper triangular block reflectors stored in compact form
                    114: *>          as a sequence of upper triangular blocks.  See below
                    115: *>          for further details.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LDT
                    119: *> \verbatim
                    120: *>          LDT is INTEGER
                    121: *>          The leading dimension of the array T.  LDT >= MB.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in,out] C
                    125: *> \verbatim
                    126: *>          C is DOUBLE PRECISION array, dimension (LDC,N)
                    127: *>          On entry, the M-by-N matrix C.
                    128: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] LDC
                    132: *> \verbatim
                    133: *>          LDC is INTEGER
                    134: *>          The leading dimension of the array C. LDC >= max(1,M).
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[out] WORK
                    138: *> \verbatim
                    139: *>         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[in] LWORK
                    143: *> \verbatim
                    144: *>          LWORK is INTEGER
                    145: *>          The dimension of the array WORK.
                    146: *>          If SIDE = 'L', LWORK >= max(1,NB) * MB;
                    147: *>          if SIDE = 'R', LWORK >= max(1,M) * MB.
                    148: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    149: *>          only calculates the optimal size of the WORK array, returns
                    150: *>          this value as the first entry of the WORK array, and no error
                    151: *>          message related to LWORK is issued by XERBLA.
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[out] INFO
                    155: *> \verbatim
                    156: *>          INFO is INTEGER
                    157: *>          = 0:  successful exit
                    158: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    159: *> \endverbatim
                    160: *
                    161: *  Authors:
                    162: *  ========
                    163: *
                    164: *> \author Univ. of Tennessee
                    165: *> \author Univ. of California Berkeley
                    166: *> \author Univ. of Colorado Denver
                    167: *> \author NAG Ltd.
                    168: *
                    169: *> \par Further Details:
                    170: *  =====================
                    171: *>
                    172: *> \verbatim
                    173: *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
                    174: *> representing Q as a product of other orthogonal matrices
                    175: *>   Q = Q(1) * Q(2) * . . . * Q(k)
                    176: *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
                    177: *>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
                    178: *>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
                    179: *>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
                    180: *>   . . .
                    181: *>
                    182: *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
                    183: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
                    184: *> block reflectors, stored in array T(1:LDT,1:N).
                    185: *> For more information see Further Details in GELQT.
                    186: *>
                    187: *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
                    188: *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
                    189: *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
                    190: *> The last Q(k) may use fewer rows.
                    191: *> For more information see Further Details in TPQRT.
                    192: *>
                    193: *> For more details of the overall algorithm, see the description of
                    194: *> Sequential TSQR in Section 2.2 of [1].
                    195: *>
                    196: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
                    197: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
                    198: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
                    199: *> \endverbatim
                    200: *>
                    201: *  =====================================================================
                    202:       SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
                    203:      $    LDT, C, LDC, WORK, LWORK, INFO )
                    204: *
1.3       bertrand  205: *  -- LAPACK computational routine (version 3.7.1) --
1.1       bertrand  206: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    207: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.3       bertrand  208: *     June 2017
1.1       bertrand  209: *
                    210: *     .. Scalar Arguments ..
                    211:       CHARACTER         SIDE, TRANS
                    212:       INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
                    213: *     ..
                    214: *     .. Array Arguments ..
                    215:       DOUBLE PRECISION A( LDA, * ), WORK( * ), C(LDC, * ),
                    216:      $      T( LDT, * )
                    217: *     ..
                    218: *
                    219: * =====================================================================
                    220: *
                    221: *     ..
                    222: *     .. Local Scalars ..
                    223:       LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
                    224:       INTEGER    I, II, KK, CTR, LW
                    225: *     ..
                    226: *     .. External Functions ..
                    227:       LOGICAL            LSAME
                    228:       EXTERNAL           LSAME
                    229: *     .. External Subroutines ..
                    230:       EXTERNAL           DTPMLQT, DGEMLQT, XERBLA
                    231: *     ..
                    232: *     .. Executable Statements ..
                    233: *
                    234: *     Test the input arguments
                    235: *
                    236:       LQUERY  = LWORK.LT.0
                    237:       NOTRAN  = LSAME( TRANS, 'N' )
                    238:       TRAN    = LSAME( TRANS, 'T' )
                    239:       LEFT    = LSAME( SIDE, 'L' )
                    240:       RIGHT   = LSAME( SIDE, 'R' )
                    241:       IF (LEFT) THEN
                    242:         LW = N * MB
                    243:       ELSE
                    244:         LW = M * MB
                    245:       END IF
                    246: *
                    247:       INFO = 0
                    248:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
                    249:          INFO = -1
                    250:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
                    251:          INFO = -2
                    252:       ELSE IF( M.LT.0 ) THEN
                    253:         INFO = -3
                    254:       ELSE IF( N.LT.0 ) THEN
                    255:         INFO = -4
                    256:       ELSE IF( K.LT.0 ) THEN
                    257:         INFO = -5
                    258:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
                    259:         INFO = -9
                    260:       ELSE IF( LDT.LT.MAX( 1, MB) ) THEN
                    261:         INFO = -11
                    262:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
                    263:          INFO = -13
                    264:       ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
                    265:         INFO = -15
                    266:       END IF
                    267: *
                    268:       IF( INFO.NE.0 ) THEN
                    269:         CALL XERBLA( 'DLAMSWLQ', -INFO )
                    270:         WORK(1) = LW
                    271:         RETURN
                    272:       ELSE IF (LQUERY) THEN
                    273:         WORK(1) = LW
                    274:         RETURN
                    275:       END IF
                    276: *
                    277: *     Quick return if possible
                    278: *
                    279:       IF( MIN(M,N,K).EQ.0 ) THEN
                    280:         RETURN
                    281:       END IF
                    282: *
                    283:       IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN
                    284:         CALL DGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
                    285:      $        T, LDT, C, LDC, WORK, INFO)
                    286:         RETURN
                    287:       END IF
                    288: *
                    289:       IF(LEFT.AND.TRAN) THEN
                    290: *
                    291: *         Multiply Q to the last block of C
                    292: *
                    293:           KK = MOD((M-K),(NB-K))
                    294:           CTR = (M-K)/(NB-K)
                    295:           IF (KK.GT.0) THEN
                    296:             II=M-KK+1
                    297:             CALL DTPMLQT('L','T',KK , N, K, 0, MB, A(1,II), LDA,
                    298:      $        T(1,CTR*K+1), LDT, C(1,1), LDC,
                    299:      $        C(II,1), LDC, WORK, INFO )
                    300:           ELSE
                    301:             II=M+1
                    302:           END IF
                    303: *
                    304:           DO I=II-(NB-K),NB+1,-(NB-K)
                    305: *
                    306: *         Multiply Q to the current block of C (1:M,I:I+NB)
                    307: *
                    308:             CTR = CTR - 1
                    309:             CALL DTPMLQT('L','T',NB-K , N, K, 0,MB, A(1,I), LDA,
                    310:      $          T(1, CTR*K+1),LDT, C(1,1), LDC,
                    311:      $          C(I,1), LDC, WORK, INFO )
                    312: 
                    313:           END DO
                    314: *
                    315: *         Multiply Q to the first block of C (1:M,1:NB)
                    316: *
                    317:           CALL DGEMLQT('L','T',NB , N, K, MB, A(1,1), LDA, T
                    318:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
                    319: *
                    320:       ELSE IF (LEFT.AND.NOTRAN) THEN
                    321: *
                    322: *         Multiply Q to the first block of C
                    323: *
                    324:          KK = MOD((M-K),(NB-K))
                    325:          II=M-KK+1
                    326:          CTR = 1
                    327:          CALL DGEMLQT('L','N',NB , N, K, MB, A(1,1), LDA, T
                    328:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
                    329: *
                    330:          DO I=NB+1,II-NB+K,(NB-K)
                    331: *
                    332: *         Multiply Q to the current block of C (I:I+NB,1:N)
                    333: *
                    334:           CALL DTPMLQT('L','N',NB-K , N, K, 0,MB, A(1,I), LDA,
                    335:      $         T(1,CTR*K+1), LDT, C(1,1), LDC,
                    336:      $         C(I,1), LDC, WORK, INFO )
                    337:           CTR = CTR + 1
                    338: *
                    339:          END DO
                    340:          IF(II.LE.M) THEN
                    341: *
                    342: *         Multiply Q to the last block of C
                    343: *
                    344:           CALL DTPMLQT('L','N',KK , N, K, 0, MB, A(1,II), LDA,
                    345:      $        T(1,CTR*K+1), LDT, C(1,1), LDC,
                    346:      $        C(II,1), LDC, WORK, INFO )
                    347: *
                    348:          END IF
                    349: *
                    350:       ELSE IF(RIGHT.AND.NOTRAN) THEN
                    351: *
                    352: *         Multiply Q to the last block of C
                    353: *
                    354:           KK = MOD((N-K),(NB-K))
                    355:           CTR = (N-K)/(NB-K)
                    356:           IF (KK.GT.0) THEN
                    357:             II=N-KK+1
                    358:             CALL DTPMLQT('R','N',M , KK, K, 0, MB, A(1, II), LDA,
                    359:      $        T(1,CTR *K+1), LDT, C(1,1), LDC,
                    360:      $        C(1,II), LDC, WORK, INFO )
                    361:           ELSE
                    362:             II=N+1
                    363:           END IF
                    364: *
                    365:           DO I=II-(NB-K),NB+1,-(NB-K)
                    366: *
                    367: *         Multiply Q to the current block of C (1:M,I:I+MB)
                    368: *
                    369:              CTR = CTR - 1
                    370:              CALL DTPMLQT('R','N', M, NB-K, K, 0, MB, A(1, I), LDA,
                    371:      $        T(1,CTR*K+1), LDT, C(1,1), LDC,
                    372:      $        C(1,I), LDC, WORK, INFO )
                    373: *
                    374:           END DO
                    375: *
                    376: *         Multiply Q to the first block of C (1:M,1:MB)
                    377: *
                    378:           CALL DGEMLQT('R','N',M , NB, K, MB, A(1,1), LDA, T
                    379:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
                    380: *
                    381:       ELSE IF (RIGHT.AND.TRAN) THEN
                    382: *
                    383: *       Multiply Q to the first block of C
                    384: *
                    385:          KK = MOD((N-K),(NB-K))
                    386:          CTR = 1
                    387:          II=N-KK+1
                    388:          CALL DGEMLQT('R','T',M , NB, K, MB, A(1,1), LDA, T
                    389:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
                    390: *
                    391:          DO I=NB+1,II-NB+K,(NB-K)
                    392: *
                    393: *         Multiply Q to the current block of C (1:M,I:I+MB)
                    394: *
                    395:           CALL DTPMLQT('R','T',M , NB-K, K, 0,MB, A(1,I), LDA,
                    396:      $       T(1,CTR*K+1), LDT, C(1,1), LDC,
                    397:      $       C(1,I), LDC, WORK, INFO )
                    398:           CTR = CTR + 1
                    399: *
                    400:          END DO
                    401:          IF(II.LE.N) THEN
                    402: *
                    403: *       Multiply Q to the last block of C
                    404: *
                    405:           CALL DTPMLQT('R','T',M , KK, K, 0,MB, A(1,II), LDA,
                    406:      $      T(1,CTR*K+1),LDT, C(1,1), LDC,
                    407:      $      C(1,II), LDC, WORK, INFO )
                    408: *
                    409:          END IF
                    410: *
                    411:       END IF
                    412: *
                    413:       WORK(1) = LW
                    414:       RETURN
                    415: *
                    416: *     End of DLAMSWLQ
                    417: *
                    418:       END

CVSweb interface <joel.bertrand@systella.fr>