File:  [local] / rpl / lapack / lapack / dlalsd.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
    2:      $                   RANK, WORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          UPLO
   11:       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
   12:       DOUBLE PRECISION   RCOND
   13: *     ..
   14: *     .. Array Arguments ..
   15:       INTEGER            IWORK( * )
   16:       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  DLALSD uses the singular value decomposition of A to solve the least
   23: *  squares problem of finding X to minimize the Euclidean norm of each
   24: *  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
   25: *  are N-by-NRHS. The solution X overwrites B.
   26: *
   27: *  The singular values of A smaller than RCOND times the largest
   28: *  singular value are treated as zero in solving the least squares
   29: *  problem; in this case a minimum norm solution is returned.
   30: *  The actual singular values are returned in D in ascending order.
   31: *
   32: *  This code makes very mild assumptions about floating point
   33: *  arithmetic. It will work on machines with a guard digit in
   34: *  add/subtract, or on those binary machines without guard digits
   35: *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
   36: *  It could conceivably fail on hexadecimal or decimal machines
   37: *  without guard digits, but we know of none.
   38: *
   39: *  Arguments
   40: *  =========
   41: *
   42: *  UPLO   (input) CHARACTER*1
   43: *         = 'U': D and E define an upper bidiagonal matrix.
   44: *         = 'L': D and E define a  lower bidiagonal matrix.
   45: *
   46: *  SMLSIZ (input) INTEGER
   47: *         The maximum size of the subproblems at the bottom of the
   48: *         computation tree.
   49: *
   50: *  N      (input) INTEGER
   51: *         The dimension of the  bidiagonal matrix.  N >= 0.
   52: *
   53: *  NRHS   (input) INTEGER
   54: *         The number of columns of B. NRHS must be at least 1.
   55: *
   56: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
   57: *         On entry D contains the main diagonal of the bidiagonal
   58: *         matrix. On exit, if INFO = 0, D contains its singular values.
   59: *
   60: *  E      (input/output) DOUBLE PRECISION array, dimension (N-1)
   61: *         Contains the super-diagonal entries of the bidiagonal matrix.
   62: *         On exit, E has been destroyed.
   63: *
   64: *  B      (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
   65: *         On input, B contains the right hand sides of the least
   66: *         squares problem. On output, B contains the solution X.
   67: *
   68: *  LDB    (input) INTEGER
   69: *         The leading dimension of B in the calling subprogram.
   70: *         LDB must be at least max(1,N).
   71: *
   72: *  RCOND  (input) DOUBLE PRECISION
   73: *         The singular values of A less than or equal to RCOND times
   74: *         the largest singular value are treated as zero in solving
   75: *         the least squares problem. If RCOND is negative,
   76: *         machine precision is used instead.
   77: *         For example, if diag(S)*X=B were the least squares problem,
   78: *         where diag(S) is a diagonal matrix of singular values, the
   79: *         solution would be X(i) = B(i) / S(i) if S(i) is greater than
   80: *         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
   81: *         RCOND*max(S).
   82: *
   83: *  RANK   (output) INTEGER
   84: *         The number of singular values of A greater than RCOND times
   85: *         the largest singular value.
   86: *
   87: *  WORK   (workspace) DOUBLE PRECISION array, dimension at least
   88: *         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
   89: *         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
   90: *
   91: *  IWORK  (workspace) INTEGER array, dimension at least
   92: *         (3*N*NLVL + 11*N)
   93: *
   94: *  INFO   (output) INTEGER
   95: *         = 0:  successful exit.
   96: *         < 0:  if INFO = -i, the i-th argument had an illegal value.
   97: *         > 0:  The algorithm failed to compute an singular value while
   98: *               working on the submatrix lying in rows and columns
   99: *               INFO/(N+1) through MOD(INFO,N+1).
  100: *
  101: *  Further Details
  102: *  ===============
  103: *
  104: *  Based on contributions by
  105: *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  106: *       California at Berkeley, USA
  107: *     Osni Marques, LBNL/NERSC, USA
  108: *
  109: *  =====================================================================
  110: *
  111: *     .. Parameters ..
  112:       DOUBLE PRECISION   ZERO, ONE, TWO
  113:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  114: *     ..
  115: *     .. Local Scalars ..
  116:       INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
  117:      $                   GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
  118:      $                   NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
  119:      $                   SMLSZP, SQRE, ST, ST1, U, VT, Z
  120:       DOUBLE PRECISION   CS, EPS, ORGNRM, R, RCND, SN, TOL
  121: *     ..
  122: *     .. External Functions ..
  123:       INTEGER            IDAMAX
  124:       DOUBLE PRECISION   DLAMCH, DLANST
  125:       EXTERNAL           IDAMAX, DLAMCH, DLANST
  126: *     ..
  127: *     .. External Subroutines ..
  128:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLALSA, DLARTG, DLASCL,
  129:      $                   DLASDA, DLASDQ, DLASET, DLASRT, DROT, XERBLA
  130: *     ..
  131: *     .. Intrinsic Functions ..
  132:       INTRINSIC          ABS, DBLE, INT, LOG, SIGN
  133: *     ..
  134: *     .. Executable Statements ..
  135: *
  136: *     Test the input parameters.
  137: *
  138:       INFO = 0
  139: *
  140:       IF( N.LT.0 ) THEN
  141:          INFO = -3
  142:       ELSE IF( NRHS.LT.1 ) THEN
  143:          INFO = -4
  144:       ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
  145:          INFO = -8
  146:       END IF
  147:       IF( INFO.NE.0 ) THEN
  148:          CALL XERBLA( 'DLALSD', -INFO )
  149:          RETURN
  150:       END IF
  151: *
  152:       EPS = DLAMCH( 'Epsilon' )
  153: *
  154: *     Set up the tolerance.
  155: *
  156:       IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
  157:          RCND = EPS
  158:       ELSE
  159:          RCND = RCOND
  160:       END IF
  161: *
  162:       RANK = 0
  163: *
  164: *     Quick return if possible.
  165: *
  166:       IF( N.EQ.0 ) THEN
  167:          RETURN
  168:       ELSE IF( N.EQ.1 ) THEN
  169:          IF( D( 1 ).EQ.ZERO ) THEN
  170:             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
  171:          ELSE
  172:             RANK = 1
  173:             CALL DLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
  174:             D( 1 ) = ABS( D( 1 ) )
  175:          END IF
  176:          RETURN
  177:       END IF
  178: *
  179: *     Rotate the matrix if it is lower bidiagonal.
  180: *
  181:       IF( UPLO.EQ.'L' ) THEN
  182:          DO 10 I = 1, N - 1
  183:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  184:             D( I ) = R
  185:             E( I ) = SN*D( I+1 )
  186:             D( I+1 ) = CS*D( I+1 )
  187:             IF( NRHS.EQ.1 ) THEN
  188:                CALL DROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
  189:             ELSE
  190:                WORK( I*2-1 ) = CS
  191:                WORK( I*2 ) = SN
  192:             END IF
  193:    10    CONTINUE
  194:          IF( NRHS.GT.1 ) THEN
  195:             DO 30 I = 1, NRHS
  196:                DO 20 J = 1, N - 1
  197:                   CS = WORK( J*2-1 )
  198:                   SN = WORK( J*2 )
  199:                   CALL DROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
  200:    20          CONTINUE
  201:    30       CONTINUE
  202:          END IF
  203:       END IF
  204: *
  205: *     Scale.
  206: *
  207:       NM1 = N - 1
  208:       ORGNRM = DLANST( 'M', N, D, E )
  209:       IF( ORGNRM.EQ.ZERO ) THEN
  210:          CALL DLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
  211:          RETURN
  212:       END IF
  213: *
  214:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  215:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
  216: *
  217: *     If N is smaller than the minimum divide size SMLSIZ, then solve
  218: *     the problem with another solver.
  219: *
  220:       IF( N.LE.SMLSIZ ) THEN
  221:          NWORK = 1 + N*N
  222:          CALL DLASET( 'A', N, N, ZERO, ONE, WORK, N )
  223:          CALL DLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
  224:      $                LDB, WORK( NWORK ), INFO )
  225:          IF( INFO.NE.0 ) THEN
  226:             RETURN
  227:          END IF
  228:          TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
  229:          DO 40 I = 1, N
  230:             IF( D( I ).LE.TOL ) THEN
  231:                CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  232:             ELSE
  233:                CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
  234:      $                      LDB, INFO )
  235:                RANK = RANK + 1
  236:             END IF
  237:    40    CONTINUE
  238:          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
  239:      $               WORK( NWORK ), N )
  240:          CALL DLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
  241: *
  242: *        Unscale.
  243: *
  244:          CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  245:          CALL DLASRT( 'D', N, D, INFO )
  246:          CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  247: *
  248:          RETURN
  249:       END IF
  250: *
  251: *     Book-keeping and setting up some constants.
  252: *
  253:       NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
  254: *
  255:       SMLSZP = SMLSIZ + 1
  256: *
  257:       U = 1
  258:       VT = 1 + SMLSIZ*N
  259:       DIFL = VT + SMLSZP*N
  260:       DIFR = DIFL + NLVL*N
  261:       Z = DIFR + NLVL*N*2
  262:       C = Z + NLVL*N
  263:       S = C + N
  264:       POLES = S + N
  265:       GIVNUM = POLES + 2*NLVL*N
  266:       BX = GIVNUM + 2*NLVL*N
  267:       NWORK = BX + N*NRHS
  268: *
  269:       SIZEI = 1 + N
  270:       K = SIZEI + N
  271:       GIVPTR = K + N
  272:       PERM = GIVPTR + N
  273:       GIVCOL = PERM + NLVL*N
  274:       IWK = GIVCOL + NLVL*N*2
  275: *
  276:       ST = 1
  277:       SQRE = 0
  278:       ICMPQ1 = 1
  279:       ICMPQ2 = 0
  280:       NSUB = 0
  281: *
  282:       DO 50 I = 1, N
  283:          IF( ABS( D( I ) ).LT.EPS ) THEN
  284:             D( I ) = SIGN( EPS, D( I ) )
  285:          END IF
  286:    50 CONTINUE
  287: *
  288:       DO 60 I = 1, NM1
  289:          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
  290:             NSUB = NSUB + 1
  291:             IWORK( NSUB ) = ST
  292: *
  293: *           Subproblem found. First determine its size and then
  294: *           apply divide and conquer on it.
  295: *
  296:             IF( I.LT.NM1 ) THEN
  297: *
  298: *              A subproblem with E(I) small for I < NM1.
  299: *
  300:                NSIZE = I - ST + 1
  301:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  302:             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
  303: *
  304: *              A subproblem with E(NM1) not too small but I = NM1.
  305: *
  306:                NSIZE = N - ST + 1
  307:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  308:             ELSE
  309: *
  310: *              A subproblem with E(NM1) small. This implies an
  311: *              1-by-1 subproblem at D(N), which is not solved
  312: *              explicitly.
  313: *
  314:                NSIZE = I - ST + 1
  315:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  316:                NSUB = NSUB + 1
  317:                IWORK( NSUB ) = N
  318:                IWORK( SIZEI+NSUB-1 ) = 1
  319:                CALL DCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
  320:             END IF
  321:             ST1 = ST - 1
  322:             IF( NSIZE.EQ.1 ) THEN
  323: *
  324: *              This is a 1-by-1 subproblem and is not solved
  325: *              explicitly.
  326: *
  327:                CALL DCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
  328:             ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  329: *
  330: *              This is a small subproblem and is solved by DLASDQ.
  331: *
  332:                CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
  333:      $                      WORK( VT+ST1 ), N )
  334:                CALL DLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
  335:      $                      E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
  336:      $                      N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
  337:                IF( INFO.NE.0 ) THEN
  338:                   RETURN
  339:                END IF
  340:                CALL DLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
  341:      $                      WORK( BX+ST1 ), N )
  342:             ELSE
  343: *
  344: *              A large problem. Solve it using divide and conquer.
  345: *
  346:                CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
  347:      $                      E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
  348:      $                      IWORK( K+ST1 ), WORK( DIFL+ST1 ),
  349:      $                      WORK( DIFR+ST1 ), WORK( Z+ST1 ),
  350:      $                      WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
  351:      $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
  352:      $                      WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
  353:      $                      WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
  354:      $                      INFO )
  355:                IF( INFO.NE.0 ) THEN
  356:                   RETURN
  357:                END IF
  358:                BXST = BX + ST1
  359:                CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
  360:      $                      LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
  361:      $                      WORK( VT+ST1 ), IWORK( K+ST1 ),
  362:      $                      WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
  363:      $                      WORK( Z+ST1 ), WORK( POLES+ST1 ),
  364:      $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  365:      $                      IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
  366:      $                      WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
  367:      $                      IWORK( IWK ), INFO )
  368:                IF( INFO.NE.0 ) THEN
  369:                   RETURN
  370:                END IF
  371:             END IF
  372:             ST = I + 1
  373:          END IF
  374:    60 CONTINUE
  375: *
  376: *     Apply the singular values and treat the tiny ones as zero.
  377: *
  378:       TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
  379: *
  380:       DO 70 I = 1, N
  381: *
  382: *        Some of the elements in D can be negative because 1-by-1
  383: *        subproblems were not solved explicitly.
  384: *
  385:          IF( ABS( D( I ) ).LE.TOL ) THEN
  386:             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
  387:          ELSE
  388:             RANK = RANK + 1
  389:             CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
  390:      $                   WORK( BX+I-1 ), N, INFO )
  391:          END IF
  392:          D( I ) = ABS( D( I ) )
  393:    70 CONTINUE
  394: *
  395: *     Now apply back the right singular vectors.
  396: *
  397:       ICMPQ2 = 1
  398:       DO 80 I = 1, NSUB
  399:          ST = IWORK( I )
  400:          ST1 = ST - 1
  401:          NSIZE = IWORK( SIZEI+I-1 )
  402:          BXST = BX + ST1
  403:          IF( NSIZE.EQ.1 ) THEN
  404:             CALL DCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
  405:          ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  406:             CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  407:      $                  WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
  408:      $                  B( ST, 1 ), LDB )
  409:          ELSE
  410:             CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
  411:      $                   B( ST, 1 ), LDB, WORK( U+ST1 ), N,
  412:      $                   WORK( VT+ST1 ), IWORK( K+ST1 ),
  413:      $                   WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
  414:      $                   WORK( Z+ST1 ), WORK( POLES+ST1 ),
  415:      $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  416:      $                   IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
  417:      $                   WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
  418:      $                   IWORK( IWK ), INFO )
  419:             IF( INFO.NE.0 ) THEN
  420:                RETURN
  421:             END IF
  422:          END IF
  423:    80 CONTINUE
  424: *
  425: *     Unscale and sort the singular values.
  426: *
  427:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  428:       CALL DLASRT( 'D', N, D, INFO )
  429:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  430: *
  431:       RETURN
  432: *
  433: *     End of DLALSD
  434: *
  435:       END

CVSweb interface <joel.bertrand@systella.fr>