File:  [local] / rpl / lapack / lapack / dlalsd.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:23 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DLALSD uses the singular value decomposition of A to solve the least squares problem.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLALSD + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsd.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsd.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsd.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
   22: *                          RANK, WORK, IWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
   27: *       DOUBLE PRECISION   RCOND
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IWORK( * )
   31: *       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DLALSD uses the singular value decomposition of A to solve the least
   41: *> squares problem of finding X to minimize the Euclidean norm of each
   42: *> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
   43: *> are N-by-NRHS. The solution X overwrites B.
   44: *>
   45: *> The singular values of A smaller than RCOND times the largest
   46: *> singular value are treated as zero in solving the least squares
   47: *> problem; in this case a minimum norm solution is returned.
   48: *> The actual singular values are returned in D in ascending order.
   49: *>
   50: *> This code makes very mild assumptions about floating point
   51: *> arithmetic. It will work on machines with a guard digit in
   52: *> add/subtract, or on those binary machines without guard digits
   53: *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
   54: *> It could conceivably fail on hexadecimal or decimal machines
   55: *> without guard digits, but we know of none.
   56: *> \endverbatim
   57: *
   58: *  Arguments:
   59: *  ==========
   60: *
   61: *> \param[in] UPLO
   62: *> \verbatim
   63: *>          UPLO is CHARACTER*1
   64: *>         = 'U': D and E define an upper bidiagonal matrix.
   65: *>         = 'L': D and E define a  lower bidiagonal matrix.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] SMLSIZ
   69: *> \verbatim
   70: *>          SMLSIZ is INTEGER
   71: *>         The maximum size of the subproblems at the bottom of the
   72: *>         computation tree.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>         The dimension of the  bidiagonal matrix.  N >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] NRHS
   82: *> \verbatim
   83: *>          NRHS is INTEGER
   84: *>         The number of columns of B. NRHS must be at least 1.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] D
   88: *> \verbatim
   89: *>          D is DOUBLE PRECISION array, dimension (N)
   90: *>         On entry D contains the main diagonal of the bidiagonal
   91: *>         matrix. On exit, if INFO = 0, D contains its singular values.
   92: *> \endverbatim
   93: *>
   94: *> \param[in,out] E
   95: *> \verbatim
   96: *>          E is DOUBLE PRECISION array, dimension (N-1)
   97: *>         Contains the super-diagonal entries of the bidiagonal matrix.
   98: *>         On exit, E has been destroyed.
   99: *> \endverbatim
  100: *>
  101: *> \param[in,out] B
  102: *> \verbatim
  103: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  104: *>         On input, B contains the right hand sides of the least
  105: *>         squares problem. On output, B contains the solution X.
  106: *> \endverbatim
  107: *>
  108: *> \param[in] LDB
  109: *> \verbatim
  110: *>          LDB is INTEGER
  111: *>         The leading dimension of B in the calling subprogram.
  112: *>         LDB must be at least max(1,N).
  113: *> \endverbatim
  114: *>
  115: *> \param[in] RCOND
  116: *> \verbatim
  117: *>          RCOND is DOUBLE PRECISION
  118: *>         The singular values of A less than or equal to RCOND times
  119: *>         the largest singular value are treated as zero in solving
  120: *>         the least squares problem. If RCOND is negative,
  121: *>         machine precision is used instead.
  122: *>         For example, if diag(S)*X=B were the least squares problem,
  123: *>         where diag(S) is a diagonal matrix of singular values, the
  124: *>         solution would be X(i) = B(i) / S(i) if S(i) is greater than
  125: *>         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
  126: *>         RCOND*max(S).
  127: *> \endverbatim
  128: *>
  129: *> \param[out] RANK
  130: *> \verbatim
  131: *>          RANK is INTEGER
  132: *>         The number of singular values of A greater than RCOND times
  133: *>         the largest singular value.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] WORK
  137: *> \verbatim
  138: *>          WORK is DOUBLE PRECISION array, dimension at least
  139: *>         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
  140: *>         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
  141: *> \endverbatim
  142: *>
  143: *> \param[out] IWORK
  144: *> \verbatim
  145: *>          IWORK is INTEGER array, dimension at least
  146: *>         (3*N*NLVL + 11*N)
  147: *> \endverbatim
  148: *>
  149: *> \param[out] INFO
  150: *> \verbatim
  151: *>          INFO is INTEGER
  152: *>         = 0:  successful exit.
  153: *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
  154: *>         > 0:  The algorithm failed to compute a singular value while
  155: *>               working on the submatrix lying in rows and columns
  156: *>               INFO/(N+1) through MOD(INFO,N+1).
  157: *> \endverbatim
  158: *
  159: *  Authors:
  160: *  ========
  161: *
  162: *> \author Univ. of Tennessee 
  163: *> \author Univ. of California Berkeley 
  164: *> \author Univ. of Colorado Denver 
  165: *> \author NAG Ltd. 
  166: *
  167: *> \date September 2012
  168: *
  169: *> \ingroup doubleOTHERcomputational
  170: *
  171: *> \par Contributors:
  172: *  ==================
  173: *>
  174: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  175: *>       California at Berkeley, USA \n
  176: *>     Osni Marques, LBNL/NERSC, USA \n
  177: *
  178: *  =====================================================================
  179:       SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
  180:      $                   RANK, WORK, IWORK, INFO )
  181: *
  182: *  -- LAPACK computational routine (version 3.4.2) --
  183: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  184: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  185: *     September 2012
  186: *
  187: *     .. Scalar Arguments ..
  188:       CHARACTER          UPLO
  189:       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
  190:       DOUBLE PRECISION   RCOND
  191: *     ..
  192: *     .. Array Arguments ..
  193:       INTEGER            IWORK( * )
  194:       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
  195: *     ..
  196: *
  197: *  =====================================================================
  198: *
  199: *     .. Parameters ..
  200:       DOUBLE PRECISION   ZERO, ONE, TWO
  201:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  202: *     ..
  203: *     .. Local Scalars ..
  204:       INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
  205:      $                   GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
  206:      $                   NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
  207:      $                   SMLSZP, SQRE, ST, ST1, U, VT, Z
  208:       DOUBLE PRECISION   CS, EPS, ORGNRM, R, RCND, SN, TOL
  209: *     ..
  210: *     .. External Functions ..
  211:       INTEGER            IDAMAX
  212:       DOUBLE PRECISION   DLAMCH, DLANST
  213:       EXTERNAL           IDAMAX, DLAMCH, DLANST
  214: *     ..
  215: *     .. External Subroutines ..
  216:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLALSA, DLARTG, DLASCL,
  217:      $                   DLASDA, DLASDQ, DLASET, DLASRT, DROT, XERBLA
  218: *     ..
  219: *     .. Intrinsic Functions ..
  220:       INTRINSIC          ABS, DBLE, INT, LOG, SIGN
  221: *     ..
  222: *     .. Executable Statements ..
  223: *
  224: *     Test the input parameters.
  225: *
  226:       INFO = 0
  227: *
  228:       IF( N.LT.0 ) THEN
  229:          INFO = -3
  230:       ELSE IF( NRHS.LT.1 ) THEN
  231:          INFO = -4
  232:       ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
  233:          INFO = -8
  234:       END IF
  235:       IF( INFO.NE.0 ) THEN
  236:          CALL XERBLA( 'DLALSD', -INFO )
  237:          RETURN
  238:       END IF
  239: *
  240:       EPS = DLAMCH( 'Epsilon' )
  241: *
  242: *     Set up the tolerance.
  243: *
  244:       IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
  245:          RCND = EPS
  246:       ELSE
  247:          RCND = RCOND
  248:       END IF
  249: *
  250:       RANK = 0
  251: *
  252: *     Quick return if possible.
  253: *
  254:       IF( N.EQ.0 ) THEN
  255:          RETURN
  256:       ELSE IF( N.EQ.1 ) THEN
  257:          IF( D( 1 ).EQ.ZERO ) THEN
  258:             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
  259:          ELSE
  260:             RANK = 1
  261:             CALL DLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
  262:             D( 1 ) = ABS( D( 1 ) )
  263:          END IF
  264:          RETURN
  265:       END IF
  266: *
  267: *     Rotate the matrix if it is lower bidiagonal.
  268: *
  269:       IF( UPLO.EQ.'L' ) THEN
  270:          DO 10 I = 1, N - 1
  271:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  272:             D( I ) = R
  273:             E( I ) = SN*D( I+1 )
  274:             D( I+1 ) = CS*D( I+1 )
  275:             IF( NRHS.EQ.1 ) THEN
  276:                CALL DROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
  277:             ELSE
  278:                WORK( I*2-1 ) = CS
  279:                WORK( I*2 ) = SN
  280:             END IF
  281:    10    CONTINUE
  282:          IF( NRHS.GT.1 ) THEN
  283:             DO 30 I = 1, NRHS
  284:                DO 20 J = 1, N - 1
  285:                   CS = WORK( J*2-1 )
  286:                   SN = WORK( J*2 )
  287:                   CALL DROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
  288:    20          CONTINUE
  289:    30       CONTINUE
  290:          END IF
  291:       END IF
  292: *
  293: *     Scale.
  294: *
  295:       NM1 = N - 1
  296:       ORGNRM = DLANST( 'M', N, D, E )
  297:       IF( ORGNRM.EQ.ZERO ) THEN
  298:          CALL DLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
  299:          RETURN
  300:       END IF
  301: *
  302:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  303:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
  304: *
  305: *     If N is smaller than the minimum divide size SMLSIZ, then solve
  306: *     the problem with another solver.
  307: *
  308:       IF( N.LE.SMLSIZ ) THEN
  309:          NWORK = 1 + N*N
  310:          CALL DLASET( 'A', N, N, ZERO, ONE, WORK, N )
  311:          CALL DLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
  312:      $                LDB, WORK( NWORK ), INFO )
  313:          IF( INFO.NE.0 ) THEN
  314:             RETURN
  315:          END IF
  316:          TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
  317:          DO 40 I = 1, N
  318:             IF( D( I ).LE.TOL ) THEN
  319:                CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  320:             ELSE
  321:                CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
  322:      $                      LDB, INFO )
  323:                RANK = RANK + 1
  324:             END IF
  325:    40    CONTINUE
  326:          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
  327:      $               WORK( NWORK ), N )
  328:          CALL DLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
  329: *
  330: *        Unscale.
  331: *
  332:          CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  333:          CALL DLASRT( 'D', N, D, INFO )
  334:          CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  335: *
  336:          RETURN
  337:       END IF
  338: *
  339: *     Book-keeping and setting up some constants.
  340: *
  341:       NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
  342: *
  343:       SMLSZP = SMLSIZ + 1
  344: *
  345:       U = 1
  346:       VT = 1 + SMLSIZ*N
  347:       DIFL = VT + SMLSZP*N
  348:       DIFR = DIFL + NLVL*N
  349:       Z = DIFR + NLVL*N*2
  350:       C = Z + NLVL*N
  351:       S = C + N
  352:       POLES = S + N
  353:       GIVNUM = POLES + 2*NLVL*N
  354:       BX = GIVNUM + 2*NLVL*N
  355:       NWORK = BX + N*NRHS
  356: *
  357:       SIZEI = 1 + N
  358:       K = SIZEI + N
  359:       GIVPTR = K + N
  360:       PERM = GIVPTR + N
  361:       GIVCOL = PERM + NLVL*N
  362:       IWK = GIVCOL + NLVL*N*2
  363: *
  364:       ST = 1
  365:       SQRE = 0
  366:       ICMPQ1 = 1
  367:       ICMPQ2 = 0
  368:       NSUB = 0
  369: *
  370:       DO 50 I = 1, N
  371:          IF( ABS( D( I ) ).LT.EPS ) THEN
  372:             D( I ) = SIGN( EPS, D( I ) )
  373:          END IF
  374:    50 CONTINUE
  375: *
  376:       DO 60 I = 1, NM1
  377:          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
  378:             NSUB = NSUB + 1
  379:             IWORK( NSUB ) = ST
  380: *
  381: *           Subproblem found. First determine its size and then
  382: *           apply divide and conquer on it.
  383: *
  384:             IF( I.LT.NM1 ) THEN
  385: *
  386: *              A subproblem with E(I) small for I < NM1.
  387: *
  388:                NSIZE = I - ST + 1
  389:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  390:             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
  391: *
  392: *              A subproblem with E(NM1) not too small but I = NM1.
  393: *
  394:                NSIZE = N - ST + 1
  395:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  396:             ELSE
  397: *
  398: *              A subproblem with E(NM1) small. This implies an
  399: *              1-by-1 subproblem at D(N), which is not solved
  400: *              explicitly.
  401: *
  402:                NSIZE = I - ST + 1
  403:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  404:                NSUB = NSUB + 1
  405:                IWORK( NSUB ) = N
  406:                IWORK( SIZEI+NSUB-1 ) = 1
  407:                CALL DCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
  408:             END IF
  409:             ST1 = ST - 1
  410:             IF( NSIZE.EQ.1 ) THEN
  411: *
  412: *              This is a 1-by-1 subproblem and is not solved
  413: *              explicitly.
  414: *
  415:                CALL DCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
  416:             ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  417: *
  418: *              This is a small subproblem and is solved by DLASDQ.
  419: *
  420:                CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
  421:      $                      WORK( VT+ST1 ), N )
  422:                CALL DLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
  423:      $                      E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
  424:      $                      N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
  425:                IF( INFO.NE.0 ) THEN
  426:                   RETURN
  427:                END IF
  428:                CALL DLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
  429:      $                      WORK( BX+ST1 ), N )
  430:             ELSE
  431: *
  432: *              A large problem. Solve it using divide and conquer.
  433: *
  434:                CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
  435:      $                      E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
  436:      $                      IWORK( K+ST1 ), WORK( DIFL+ST1 ),
  437:      $                      WORK( DIFR+ST1 ), WORK( Z+ST1 ),
  438:      $                      WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
  439:      $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
  440:      $                      WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
  441:      $                      WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
  442:      $                      INFO )
  443:                IF( INFO.NE.0 ) THEN
  444:                   RETURN
  445:                END IF
  446:                BXST = BX + ST1
  447:                CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
  448:      $                      LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
  449:      $                      WORK( VT+ST1 ), IWORK( K+ST1 ),
  450:      $                      WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
  451:      $                      WORK( Z+ST1 ), WORK( POLES+ST1 ),
  452:      $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  453:      $                      IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
  454:      $                      WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
  455:      $                      IWORK( IWK ), INFO )
  456:                IF( INFO.NE.0 ) THEN
  457:                   RETURN
  458:                END IF
  459:             END IF
  460:             ST = I + 1
  461:          END IF
  462:    60 CONTINUE
  463: *
  464: *     Apply the singular values and treat the tiny ones as zero.
  465: *
  466:       TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
  467: *
  468:       DO 70 I = 1, N
  469: *
  470: *        Some of the elements in D can be negative because 1-by-1
  471: *        subproblems were not solved explicitly.
  472: *
  473:          IF( ABS( D( I ) ).LE.TOL ) THEN
  474:             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
  475:          ELSE
  476:             RANK = RANK + 1
  477:             CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
  478:      $                   WORK( BX+I-1 ), N, INFO )
  479:          END IF
  480:          D( I ) = ABS( D( I ) )
  481:    70 CONTINUE
  482: *
  483: *     Now apply back the right singular vectors.
  484: *
  485:       ICMPQ2 = 1
  486:       DO 80 I = 1, NSUB
  487:          ST = IWORK( I )
  488:          ST1 = ST - 1
  489:          NSIZE = IWORK( SIZEI+I-1 )
  490:          BXST = BX + ST1
  491:          IF( NSIZE.EQ.1 ) THEN
  492:             CALL DCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
  493:          ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  494:             CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  495:      $                  WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
  496:      $                  B( ST, 1 ), LDB )
  497:          ELSE
  498:             CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
  499:      $                   B( ST, 1 ), LDB, WORK( U+ST1 ), N,
  500:      $                   WORK( VT+ST1 ), IWORK( K+ST1 ),
  501:      $                   WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
  502:      $                   WORK( Z+ST1 ), WORK( POLES+ST1 ),
  503:      $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  504:      $                   IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
  505:      $                   WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
  506:      $                   IWORK( IWK ), INFO )
  507:             IF( INFO.NE.0 ) THEN
  508:                RETURN
  509:             END IF
  510:          END IF
  511:    80 CONTINUE
  512: *
  513: *     Unscale and sort the singular values.
  514: *
  515:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  516:       CALL DLASRT( 'D', N, D, INFO )
  517:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  518: *
  519:       RETURN
  520: *
  521: *     End of DLALSD
  522: *
  523:       END

CVSweb interface <joel.bertrand@systella.fr>