File:  [local] / rpl / lapack / lapack / dlalsa.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:17:56 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLALSA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
   22: *                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
   23: *                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
   24: *                          IWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
   28: *      $                   SMLSIZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
   32: *      $                   K( * ), PERM( LDGCOL, * )
   33: *       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
   34: *      $                   DIFL( LDU, * ), DIFR( LDU, * ),
   35: *      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
   36: *      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
   37: *      $                   Z( LDU, * )
   38: *       ..
   39: *
   40: *
   41: *> \par Purpose:
   42: *  =============
   43: *>
   44: *> \verbatim
   45: *>
   46: *> DLALSA is an itermediate step in solving the least squares problem
   47: *> by computing the SVD of the coefficient matrix in compact form (The
   48: *> singular vectors are computed as products of simple orthorgonal
   49: *> matrices.).
   50: *>
   51: *> If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
   52: *> matrix of an upper bidiagonal matrix to the right hand side; and if
   53: *> ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
   54: *> right hand side. The singular vector matrices were generated in
   55: *> compact form by DLALSA.
   56: *> \endverbatim
   57: *
   58: *  Arguments:
   59: *  ==========
   60: *
   61: *> \param[in] ICOMPQ
   62: *> \verbatim
   63: *>          ICOMPQ is INTEGER
   64: *>         Specifies whether the left or the right singular vector
   65: *>         matrix is involved.
   66: *>         = 0: Left singular vector matrix
   67: *>         = 1: Right singular vector matrix
   68: *> \endverbatim
   69: *>
   70: *> \param[in] SMLSIZ
   71: *> \verbatim
   72: *>          SMLSIZ is INTEGER
   73: *>         The maximum size of the subproblems at the bottom of the
   74: *>         computation tree.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] N
   78: *> \verbatim
   79: *>          N is INTEGER
   80: *>         The row and column dimensions of the upper bidiagonal matrix.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] NRHS
   84: *> \verbatim
   85: *>          NRHS is INTEGER
   86: *>         The number of columns of B and BX. NRHS must be at least 1.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] B
   90: *> \verbatim
   91: *>          B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
   92: *>         On input, B contains the right hand sides of the least
   93: *>         squares problem in rows 1 through M.
   94: *>         On output, B contains the solution X in rows 1 through N.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] LDB
   98: *> \verbatim
   99: *>          LDB is INTEGER
  100: *>         The leading dimension of B in the calling subprogram.
  101: *>         LDB must be at least max(1,MAX( M, N ) ).
  102: *> \endverbatim
  103: *>
  104: *> \param[out] BX
  105: *> \verbatim
  106: *>          BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
  107: *>         On exit, the result of applying the left or right singular
  108: *>         vector matrix to B.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LDBX
  112: *> \verbatim
  113: *>          LDBX is INTEGER
  114: *>         The leading dimension of BX.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] U
  118: *> \verbatim
  119: *>          U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
  120: *>         On entry, U contains the left singular vector matrices of all
  121: *>         subproblems at the bottom level.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] LDU
  125: *> \verbatim
  126: *>          LDU is INTEGER, LDU = > N.
  127: *>         The leading dimension of arrays U, VT, DIFL, DIFR,
  128: *>         POLES, GIVNUM, and Z.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] VT
  132: *> \verbatim
  133: *>          VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
  134: *>         On entry, VT**T contains the right singular vector matrices of
  135: *>         all subproblems at the bottom level.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] K
  139: *> \verbatim
  140: *>          K is INTEGER array, dimension ( N ).
  141: *> \endverbatim
  142: *>
  143: *> \param[in] DIFL
  144: *> \verbatim
  145: *>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
  146: *>         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
  147: *> \endverbatim
  148: *>
  149: *> \param[in] DIFR
  150: *> \verbatim
  151: *>          DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
  152: *>         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
  153: *>         distances between singular values on the I-th level and
  154: *>         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
  155: *>         record the normalizing factors of the right singular vectors
  156: *>         matrices of subproblems on I-th level.
  157: *> \endverbatim
  158: *>
  159: *> \param[in] Z
  160: *> \verbatim
  161: *>          Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
  162: *>         On entry, Z(1, I) contains the components of the deflation-
  163: *>         adjusted updating row vector for subproblems on the I-th
  164: *>         level.
  165: *> \endverbatim
  166: *>
  167: *> \param[in] POLES
  168: *> \verbatim
  169: *>          POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
  170: *>         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
  171: *>         singular values involved in the secular equations on the I-th
  172: *>         level.
  173: *> \endverbatim
  174: *>
  175: *> \param[in] GIVPTR
  176: *> \verbatim
  177: *>          GIVPTR is INTEGER array, dimension ( N ).
  178: *>         On entry, GIVPTR( I ) records the number of Givens
  179: *>         rotations performed on the I-th problem on the computation
  180: *>         tree.
  181: *> \endverbatim
  182: *>
  183: *> \param[in] GIVCOL
  184: *> \verbatim
  185: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
  186: *>         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
  187: *>         locations of Givens rotations performed on the I-th level on
  188: *>         the computation tree.
  189: *> \endverbatim
  190: *>
  191: *> \param[in] LDGCOL
  192: *> \verbatim
  193: *>          LDGCOL is INTEGER, LDGCOL = > N.
  194: *>         The leading dimension of arrays GIVCOL and PERM.
  195: *> \endverbatim
  196: *>
  197: *> \param[in] PERM
  198: *> \verbatim
  199: *>          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
  200: *>         On entry, PERM(*, I) records permutations done on the I-th
  201: *>         level of the computation tree.
  202: *> \endverbatim
  203: *>
  204: *> \param[in] GIVNUM
  205: *> \verbatim
  206: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
  207: *>         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
  208: *>         values of Givens rotations performed on the I-th level on the
  209: *>         computation tree.
  210: *> \endverbatim
  211: *>
  212: *> \param[in] C
  213: *> \verbatim
  214: *>          C is DOUBLE PRECISION array, dimension ( N ).
  215: *>         On entry, if the I-th subproblem is not square,
  216: *>         C( I ) contains the C-value of a Givens rotation related to
  217: *>         the right null space of the I-th subproblem.
  218: *> \endverbatim
  219: *>
  220: *> \param[in] S
  221: *> \verbatim
  222: *>          S is DOUBLE PRECISION array, dimension ( N ).
  223: *>         On entry, if the I-th subproblem is not square,
  224: *>         S( I ) contains the S-value of a Givens rotation related to
  225: *>         the right null space of the I-th subproblem.
  226: *> \endverbatim
  227: *>
  228: *> \param[out] WORK
  229: *> \verbatim
  230: *>          WORK is DOUBLE PRECISION array, dimension (N)
  231: *> \endverbatim
  232: *>
  233: *> \param[out] IWORK
  234: *> \verbatim
  235: *>          IWORK is INTEGER array, dimension (3*N)
  236: *> \endverbatim
  237: *>
  238: *> \param[out] INFO
  239: *> \verbatim
  240: *>          INFO is INTEGER
  241: *>          = 0:  successful exit.
  242: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  243: *> \endverbatim
  244: *
  245: *  Authors:
  246: *  ========
  247: *
  248: *> \author Univ. of Tennessee
  249: *> \author Univ. of California Berkeley
  250: *> \author Univ. of Colorado Denver
  251: *> \author NAG Ltd.
  252: *
  253: *> \date June 2017
  254: *
  255: *> \ingroup doubleOTHERcomputational
  256: *
  257: *> \par Contributors:
  258: *  ==================
  259: *>
  260: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  261: *>       California at Berkeley, USA \n
  262: *>     Osni Marques, LBNL/NERSC, USA \n
  263: *
  264: *  =====================================================================
  265:       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
  266:      $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
  267:      $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
  268:      $                   IWORK, INFO )
  269: *
  270: *  -- LAPACK computational routine (version 3.7.1) --
  271: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  272: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  273: *     June 2017
  274: *
  275: *     .. Scalar Arguments ..
  276:       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
  277:      $                   SMLSIZ
  278: *     ..
  279: *     .. Array Arguments ..
  280:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
  281:      $                   K( * ), PERM( LDGCOL, * )
  282:       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
  283:      $                   DIFL( LDU, * ), DIFR( LDU, * ),
  284:      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
  285:      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
  286:      $                   Z( LDU, * )
  287: *     ..
  288: *
  289: *  =====================================================================
  290: *
  291: *     .. Parameters ..
  292:       DOUBLE PRECISION   ZERO, ONE
  293:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  294: *     ..
  295: *     .. Local Scalars ..
  296:       INTEGER            I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2,
  297:      $                   ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL,
  298:      $                   NR, NRF, NRP1, SQRE
  299: *     ..
  300: *     .. External Subroutines ..
  301:       EXTERNAL           DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
  302: *     ..
  303: *     .. Executable Statements ..
  304: *
  305: *     Test the input parameters.
  306: *
  307:       INFO = 0
  308: *
  309:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  310:          INFO = -1
  311:       ELSE IF( SMLSIZ.LT.3 ) THEN
  312:          INFO = -2
  313:       ELSE IF( N.LT.SMLSIZ ) THEN
  314:          INFO = -3
  315:       ELSE IF( NRHS.LT.1 ) THEN
  316:          INFO = -4
  317:       ELSE IF( LDB.LT.N ) THEN
  318:          INFO = -6
  319:       ELSE IF( LDBX.LT.N ) THEN
  320:          INFO = -8
  321:       ELSE IF( LDU.LT.N ) THEN
  322:          INFO = -10
  323:       ELSE IF( LDGCOL.LT.N ) THEN
  324:          INFO = -19
  325:       END IF
  326:       IF( INFO.NE.0 ) THEN
  327:          CALL XERBLA( 'DLALSA', -INFO )
  328:          RETURN
  329:       END IF
  330: *
  331: *     Book-keeping and  setting up the computation tree.
  332: *
  333:       INODE = 1
  334:       NDIML = INODE + N
  335:       NDIMR = NDIML + N
  336: *
  337:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
  338:      $             IWORK( NDIMR ), SMLSIZ )
  339: *
  340: *     The following code applies back the left singular vector factors.
  341: *     For applying back the right singular vector factors, go to 50.
  342: *
  343:       IF( ICOMPQ.EQ.1 ) THEN
  344:          GO TO 50
  345:       END IF
  346: *
  347: *     The nodes on the bottom level of the tree were solved
  348: *     by DLASDQ. The corresponding left and right singular vector
  349: *     matrices are in explicit form. First apply back the left
  350: *     singular vector matrices.
  351: *
  352:       NDB1 = ( ND+1 ) / 2
  353:       DO 10 I = NDB1, ND
  354: *
  355: *        IC : center row of each node
  356: *        NL : number of rows of left  subproblem
  357: *        NR : number of rows of right subproblem
  358: *        NLF: starting row of the left   subproblem
  359: *        NRF: starting row of the right  subproblem
  360: *
  361:          I1 = I - 1
  362:          IC = IWORK( INODE+I1 )
  363:          NL = IWORK( NDIML+I1 )
  364:          NR = IWORK( NDIMR+I1 )
  365:          NLF = IC - NL
  366:          NRF = IC + 1
  367:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
  368:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
  369:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
  370:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
  371:    10 CONTINUE
  372: *
  373: *     Next copy the rows of B that correspond to unchanged rows
  374: *     in the bidiagonal matrix to BX.
  375: *
  376:       DO 20 I = 1, ND
  377:          IC = IWORK( INODE+I-1 )
  378:          CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
  379:    20 CONTINUE
  380: *
  381: *     Finally go through the left singular vector matrices of all
  382: *     the other subproblems bottom-up on the tree.
  383: *
  384:       J = 2**NLVL
  385:       SQRE = 0
  386: *
  387:       DO 40 LVL = NLVL, 1, -1
  388:          LVL2 = 2*LVL - 1
  389: *
  390: *        find the first node LF and last node LL on
  391: *        the current level LVL
  392: *
  393:          IF( LVL.EQ.1 ) THEN
  394:             LF = 1
  395:             LL = 1
  396:          ELSE
  397:             LF = 2**( LVL-1 )
  398:             LL = 2*LF - 1
  399:          END IF
  400:          DO 30 I = LF, LL
  401:             IM1 = I - 1
  402:             IC = IWORK( INODE+IM1 )
  403:             NL = IWORK( NDIML+IM1 )
  404:             NR = IWORK( NDIMR+IM1 )
  405:             NLF = IC - NL
  406:             NRF = IC + 1
  407:             J = J - 1
  408:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
  409:      $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
  410:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
  411:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
  412:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
  413:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
  414:      $                   INFO )
  415:    30    CONTINUE
  416:    40 CONTINUE
  417:       GO TO 90
  418: *
  419: *     ICOMPQ = 1: applying back the right singular vector factors.
  420: *
  421:    50 CONTINUE
  422: *
  423: *     First now go through the right singular vector matrices of all
  424: *     the tree nodes top-down.
  425: *
  426:       J = 0
  427:       DO 70 LVL = 1, NLVL
  428:          LVL2 = 2*LVL - 1
  429: *
  430: *        Find the first node LF and last node LL on
  431: *        the current level LVL.
  432: *
  433:          IF( LVL.EQ.1 ) THEN
  434:             LF = 1
  435:             LL = 1
  436:          ELSE
  437:             LF = 2**( LVL-1 )
  438:             LL = 2*LF - 1
  439:          END IF
  440:          DO 60 I = LL, LF, -1
  441:             IM1 = I - 1
  442:             IC = IWORK( INODE+IM1 )
  443:             NL = IWORK( NDIML+IM1 )
  444:             NR = IWORK( NDIMR+IM1 )
  445:             NLF = IC - NL
  446:             NRF = IC + 1
  447:             IF( I.EQ.LL ) THEN
  448:                SQRE = 0
  449:             ELSE
  450:                SQRE = 1
  451:             END IF
  452:             J = J + 1
  453:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
  454:      $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
  455:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
  456:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
  457:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
  458:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
  459:      $                   INFO )
  460:    60    CONTINUE
  461:    70 CONTINUE
  462: *
  463: *     The nodes on the bottom level of the tree were solved
  464: *     by DLASDQ. The corresponding right singular vector
  465: *     matrices are in explicit form. Apply them back.
  466: *
  467:       NDB1 = ( ND+1 ) / 2
  468:       DO 80 I = NDB1, ND
  469:          I1 = I - 1
  470:          IC = IWORK( INODE+I1 )
  471:          NL = IWORK( NDIML+I1 )
  472:          NR = IWORK( NDIMR+I1 )
  473:          NLP1 = NL + 1
  474:          IF( I.EQ.ND ) THEN
  475:             NRP1 = NR
  476:          ELSE
  477:             NRP1 = NR + 1
  478:          END IF
  479:          NLF = IC - NL
  480:          NRF = IC + 1
  481:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
  482:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
  483:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
  484:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
  485:    80 CONTINUE
  486: *
  487:    90 CONTINUE
  488: *
  489:       RETURN
  490: *
  491: *     End of DLALSA
  492: *
  493:       END

CVSweb interface <joel.bertrand@systella.fr>