Annotation of rpl/lapack/lapack/dlalsa.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DLALSA
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLALSA + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
        !            22: *                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
        !            23: *                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
        !            24: *                          IWORK, INFO )
        !            25: * 
        !            26: *       .. Scalar Arguments ..
        !            27: *       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
        !            28: *      $                   SMLSIZ
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
        !            32: *      $                   K( * ), PERM( LDGCOL, * )
        !            33: *       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
        !            34: *      $                   DIFL( LDU, * ), DIFR( LDU, * ),
        !            35: *      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
        !            36: *      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
        !            37: *      $                   Z( LDU, * )
        !            38: *       ..
        !            39: *  
        !            40: *
        !            41: *> \par Purpose:
        !            42: *  =============
        !            43: *>
        !            44: *> \verbatim
        !            45: *>
        !            46: *> DLALSA is an itermediate step in solving the least squares problem
        !            47: *> by computing the SVD of the coefficient matrix in compact form (The
        !            48: *> singular vectors are computed as products of simple orthorgonal
        !            49: *> matrices.).
        !            50: *>
        !            51: *> If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
        !            52: *> matrix of an upper bidiagonal matrix to the right hand side; and if
        !            53: *> ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
        !            54: *> right hand side. The singular vector matrices were generated in
        !            55: *> compact form by DLALSA.
        !            56: *> \endverbatim
        !            57: *
        !            58: *  Arguments:
        !            59: *  ==========
        !            60: *
        !            61: *> \param[in] ICOMPQ
        !            62: *> \verbatim
        !            63: *>          ICOMPQ is INTEGER
        !            64: *>         Specifies whether the left or the right singular vector
        !            65: *>         matrix is involved.
        !            66: *>         = 0: Left singular vector matrix
        !            67: *>         = 1: Right singular vector matrix
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in] SMLSIZ
        !            71: *> \verbatim
        !            72: *>          SMLSIZ is INTEGER
        !            73: *>         The maximum size of the subproblems at the bottom of the
        !            74: *>         computation tree.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in] N
        !            78: *> \verbatim
        !            79: *>          N is INTEGER
        !            80: *>         The row and column dimensions of the upper bidiagonal matrix.
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in] NRHS
        !            84: *> \verbatim
        !            85: *>          NRHS is INTEGER
        !            86: *>         The number of columns of B and BX. NRHS must be at least 1.
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[in,out] B
        !            90: *> \verbatim
        !            91: *>          B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
        !            92: *>         On input, B contains the right hand sides of the least
        !            93: *>         squares problem in rows 1 through M.
        !            94: *>         On output, B contains the solution X in rows 1 through N.
        !            95: *> \endverbatim
        !            96: *>
        !            97: *> \param[in] LDB
        !            98: *> \verbatim
        !            99: *>          LDB is INTEGER
        !           100: *>         The leading dimension of B in the calling subprogram.
        !           101: *>         LDB must be at least max(1,MAX( M, N ) ).
        !           102: *> \endverbatim
        !           103: *>
        !           104: *> \param[out] BX
        !           105: *> \verbatim
        !           106: *>          BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
        !           107: *>         On exit, the result of applying the left or right singular
        !           108: *>         vector matrix to B.
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in] LDBX
        !           112: *> \verbatim
        !           113: *>          LDBX is INTEGER
        !           114: *>         The leading dimension of BX.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in] U
        !           118: *> \verbatim
        !           119: *>          U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
        !           120: *>         On entry, U contains the left singular vector matrices of all
        !           121: *>         subproblems at the bottom level.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] LDU
        !           125: *> \verbatim
        !           126: *>          LDU is INTEGER, LDU = > N.
        !           127: *>         The leading dimension of arrays U, VT, DIFL, DIFR,
        !           128: *>         POLES, GIVNUM, and Z.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in] VT
        !           132: *> \verbatim
        !           133: *>          VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
        !           134: *>         On entry, VT**T contains the right singular vector matrices of
        !           135: *>         all subproblems at the bottom level.
        !           136: *> \endverbatim
        !           137: *>
        !           138: *> \param[in] K
        !           139: *> \verbatim
        !           140: *>          K is INTEGER array, dimension ( N ).
        !           141: *> \endverbatim
        !           142: *>
        !           143: *> \param[in] DIFL
        !           144: *> \verbatim
        !           145: *>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
        !           146: *>         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
        !           147: *> \endverbatim
        !           148: *>
        !           149: *> \param[in] DIFR
        !           150: *> \verbatim
        !           151: *>          DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
        !           152: *>         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
        !           153: *>         distances between singular values on the I-th level and
        !           154: *>         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
        !           155: *>         record the normalizing factors of the right singular vectors
        !           156: *>         matrices of subproblems on I-th level.
        !           157: *> \endverbatim
        !           158: *>
        !           159: *> \param[in] Z
        !           160: *> \verbatim
        !           161: *>          Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
        !           162: *>         On entry, Z(1, I) contains the components of the deflation-
        !           163: *>         adjusted updating row vector for subproblems on the I-th
        !           164: *>         level.
        !           165: *> \endverbatim
        !           166: *>
        !           167: *> \param[in] POLES
        !           168: *> \verbatim
        !           169: *>          POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
        !           170: *>         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
        !           171: *>         singular values involved in the secular equations on the I-th
        !           172: *>         level.
        !           173: *> \endverbatim
        !           174: *>
        !           175: *> \param[in] GIVPTR
        !           176: *> \verbatim
        !           177: *>          GIVPTR is INTEGER array, dimension ( N ).
        !           178: *>         On entry, GIVPTR( I ) records the number of Givens
        !           179: *>         rotations performed on the I-th problem on the computation
        !           180: *>         tree.
        !           181: *> \endverbatim
        !           182: *>
        !           183: *> \param[in] GIVCOL
        !           184: *> \verbatim
        !           185: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
        !           186: *>         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
        !           187: *>         locations of Givens rotations performed on the I-th level on
        !           188: *>         the computation tree.
        !           189: *> \endverbatim
        !           190: *>
        !           191: *> \param[in] LDGCOL
        !           192: *> \verbatim
        !           193: *>          LDGCOL is INTEGER, LDGCOL = > N.
        !           194: *>         The leading dimension of arrays GIVCOL and PERM.
        !           195: *> \endverbatim
        !           196: *>
        !           197: *> \param[in] PERM
        !           198: *> \verbatim
        !           199: *>          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
        !           200: *>         On entry, PERM(*, I) records permutations done on the I-th
        !           201: *>         level of the computation tree.
        !           202: *> \endverbatim
        !           203: *>
        !           204: *> \param[in] GIVNUM
        !           205: *> \verbatim
        !           206: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
        !           207: *>         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
        !           208: *>         values of Givens rotations performed on the I-th level on the
        !           209: *>         computation tree.
        !           210: *> \endverbatim
        !           211: *>
        !           212: *> \param[in] C
        !           213: *> \verbatim
        !           214: *>          C is DOUBLE PRECISION array, dimension ( N ).
        !           215: *>         On entry, if the I-th subproblem is not square,
        !           216: *>         C( I ) contains the C-value of a Givens rotation related to
        !           217: *>         the right null space of the I-th subproblem.
        !           218: *> \endverbatim
        !           219: *>
        !           220: *> \param[in] S
        !           221: *> \verbatim
        !           222: *>          S is DOUBLE PRECISION array, dimension ( N ).
        !           223: *>         On entry, if the I-th subproblem is not square,
        !           224: *>         S( I ) contains the S-value of a Givens rotation related to
        !           225: *>         the right null space of the I-th subproblem.
        !           226: *> \endverbatim
        !           227: *>
        !           228: *> \param[out] WORK
        !           229: *> \verbatim
        !           230: *>          WORK is DOUBLE PRECISION array.
        !           231: *>         The dimension must be at least N.
        !           232: *> \endverbatim
        !           233: *>
        !           234: *> \param[out] IWORK
        !           235: *> \verbatim
        !           236: *>          IWORK is INTEGER array.
        !           237: *>         The dimension must be at least 3 * N
        !           238: *> \endverbatim
        !           239: *>
        !           240: *> \param[out] INFO
        !           241: *> \verbatim
        !           242: *>          INFO is INTEGER
        !           243: *>          = 0:  successful exit.
        !           244: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           245: *> \endverbatim
        !           246: *
        !           247: *  Authors:
        !           248: *  ========
        !           249: *
        !           250: *> \author Univ. of Tennessee 
        !           251: *> \author Univ. of California Berkeley 
        !           252: *> \author Univ. of Colorado Denver 
        !           253: *> \author NAG Ltd. 
        !           254: *
        !           255: *> \date November 2011
        !           256: *
        !           257: *> \ingroup doubleOTHERcomputational
        !           258: *
        !           259: *> \par Contributors:
        !           260: *  ==================
        !           261: *>
        !           262: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
        !           263: *>       California at Berkeley, USA \n
        !           264: *>     Osni Marques, LBNL/NERSC, USA \n
        !           265: *
        !           266: *  =====================================================================
1.1       bertrand  267:       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
                    268:      $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
                    269:      $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
                    270:      $                   IWORK, INFO )
                    271: *
1.9     ! bertrand  272: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  273: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    274: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  275: *     November 2011
1.1       bertrand  276: *
                    277: *     .. Scalar Arguments ..
                    278:       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
                    279:      $                   SMLSIZ
                    280: *     ..
                    281: *     .. Array Arguments ..
                    282:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                    283:      $                   K( * ), PERM( LDGCOL, * )
                    284:       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
                    285:      $                   DIFL( LDU, * ), DIFR( LDU, * ),
                    286:      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
                    287:      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
                    288:      $                   Z( LDU, * )
                    289: *     ..
                    290: *
                    291: *  =====================================================================
                    292: *
                    293: *     .. Parameters ..
                    294:       DOUBLE PRECISION   ZERO, ONE
                    295:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    296: *     ..
                    297: *     .. Local Scalars ..
                    298:       INTEGER            I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2,
                    299:      $                   ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL,
                    300:      $                   NR, NRF, NRP1, SQRE
                    301: *     ..
                    302: *     .. External Subroutines ..
                    303:       EXTERNAL           DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
                    304: *     ..
                    305: *     .. Executable Statements ..
                    306: *
                    307: *     Test the input parameters.
                    308: *
                    309:       INFO = 0
                    310: *
                    311:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    312:          INFO = -1
                    313:       ELSE IF( SMLSIZ.LT.3 ) THEN
                    314:          INFO = -2
                    315:       ELSE IF( N.LT.SMLSIZ ) THEN
                    316:          INFO = -3
                    317:       ELSE IF( NRHS.LT.1 ) THEN
                    318:          INFO = -4
                    319:       ELSE IF( LDB.LT.N ) THEN
                    320:          INFO = -6
                    321:       ELSE IF( LDBX.LT.N ) THEN
                    322:          INFO = -8
                    323:       ELSE IF( LDU.LT.N ) THEN
                    324:          INFO = -10
                    325:       ELSE IF( LDGCOL.LT.N ) THEN
                    326:          INFO = -19
                    327:       END IF
                    328:       IF( INFO.NE.0 ) THEN
                    329:          CALL XERBLA( 'DLALSA', -INFO )
                    330:          RETURN
                    331:       END IF
                    332: *
                    333: *     Book-keeping and  setting up the computation tree.
                    334: *
                    335:       INODE = 1
                    336:       NDIML = INODE + N
                    337:       NDIMR = NDIML + N
                    338: *
                    339:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
                    340:      $             IWORK( NDIMR ), SMLSIZ )
                    341: *
                    342: *     The following code applies back the left singular vector factors.
                    343: *     For applying back the right singular vector factors, go to 50.
                    344: *
                    345:       IF( ICOMPQ.EQ.1 ) THEN
                    346:          GO TO 50
                    347:       END IF
                    348: *
                    349: *     The nodes on the bottom level of the tree were solved
                    350: *     by DLASDQ. The corresponding left and right singular vector
                    351: *     matrices are in explicit form. First apply back the left
                    352: *     singular vector matrices.
                    353: *
                    354:       NDB1 = ( ND+1 ) / 2
                    355:       DO 10 I = NDB1, ND
                    356: *
                    357: *        IC : center row of each node
                    358: *        NL : number of rows of left  subproblem
                    359: *        NR : number of rows of right subproblem
                    360: *        NLF: starting row of the left   subproblem
                    361: *        NRF: starting row of the right  subproblem
                    362: *
                    363:          I1 = I - 1
                    364:          IC = IWORK( INODE+I1 )
                    365:          NL = IWORK( NDIML+I1 )
                    366:          NR = IWORK( NDIMR+I1 )
                    367:          NLF = IC - NL
                    368:          NRF = IC + 1
                    369:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
                    370:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    371:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
                    372:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    373:    10 CONTINUE
                    374: *
                    375: *     Next copy the rows of B that correspond to unchanged rows
                    376: *     in the bidiagonal matrix to BX.
                    377: *
                    378:       DO 20 I = 1, ND
                    379:          IC = IWORK( INODE+I-1 )
                    380:          CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
                    381:    20 CONTINUE
                    382: *
                    383: *     Finally go through the left singular vector matrices of all
                    384: *     the other subproblems bottom-up on the tree.
                    385: *
                    386:       J = 2**NLVL
                    387:       SQRE = 0
                    388: *
                    389:       DO 40 LVL = NLVL, 1, -1
                    390:          LVL2 = 2*LVL - 1
                    391: *
                    392: *        find the first node LF and last node LL on
                    393: *        the current level LVL
                    394: *
                    395:          IF( LVL.EQ.1 ) THEN
                    396:             LF = 1
                    397:             LL = 1
                    398:          ELSE
                    399:             LF = 2**( LVL-1 )
                    400:             LL = 2*LF - 1
                    401:          END IF
                    402:          DO 30 I = LF, LL
                    403:             IM1 = I - 1
                    404:             IC = IWORK( INODE+IM1 )
                    405:             NL = IWORK( NDIML+IM1 )
                    406:             NR = IWORK( NDIMR+IM1 )
                    407:             NLF = IC - NL
                    408:             NRF = IC + 1
                    409:             J = J - 1
                    410:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
                    411:      $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
                    412:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    413:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    414:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    415:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
                    416:      $                   INFO )
                    417:    30    CONTINUE
                    418:    40 CONTINUE
                    419:       GO TO 90
                    420: *
                    421: *     ICOMPQ = 1: applying back the right singular vector factors.
                    422: *
                    423:    50 CONTINUE
                    424: *
                    425: *     First now go through the right singular vector matrices of all
                    426: *     the tree nodes top-down.
                    427: *
                    428:       J = 0
                    429:       DO 70 LVL = 1, NLVL
                    430:          LVL2 = 2*LVL - 1
                    431: *
                    432: *        Find the first node LF and last node LL on
                    433: *        the current level LVL.
                    434: *
                    435:          IF( LVL.EQ.1 ) THEN
                    436:             LF = 1
                    437:             LL = 1
                    438:          ELSE
                    439:             LF = 2**( LVL-1 )
                    440:             LL = 2*LF - 1
                    441:          END IF
                    442:          DO 60 I = LL, LF, -1
                    443:             IM1 = I - 1
                    444:             IC = IWORK( INODE+IM1 )
                    445:             NL = IWORK( NDIML+IM1 )
                    446:             NR = IWORK( NDIMR+IM1 )
                    447:             NLF = IC - NL
                    448:             NRF = IC + 1
                    449:             IF( I.EQ.LL ) THEN
                    450:                SQRE = 0
                    451:             ELSE
                    452:                SQRE = 1
                    453:             END IF
                    454:             J = J + 1
                    455:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
                    456:      $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
                    457:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    458:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    459:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    460:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
                    461:      $                   INFO )
                    462:    60    CONTINUE
                    463:    70 CONTINUE
                    464: *
                    465: *     The nodes on the bottom level of the tree were solved
                    466: *     by DLASDQ. The corresponding right singular vector
                    467: *     matrices are in explicit form. Apply them back.
                    468: *
                    469:       NDB1 = ( ND+1 ) / 2
                    470:       DO 80 I = NDB1, ND
                    471:          I1 = I - 1
                    472:          IC = IWORK( INODE+I1 )
                    473:          NL = IWORK( NDIML+I1 )
                    474:          NR = IWORK( NDIMR+I1 )
                    475:          NLP1 = NL + 1
                    476:          IF( I.EQ.ND ) THEN
                    477:             NRP1 = NR
                    478:          ELSE
                    479:             NRP1 = NR + 1
                    480:          END IF
                    481:          NLF = IC - NL
                    482:          NRF = IC + 1
                    483:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
                    484:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    485:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
                    486:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    487:    80 CONTINUE
                    488: *
                    489:    90 CONTINUE
                    490: *
                    491:       RETURN
                    492: *
                    493: *     End of DLALSA
                    494: *
                    495:       END

CVSweb interface <joel.bertrand@systella.fr>