Annotation of rpl/lapack/lapack/dlalsa.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
                      2:      $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
                      3:      $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
                      4:      $                   IWORK, INFO )
                      5: *
                      6: *  -- LAPACK routine (version 3.2) --
                      7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      9: *     November 2006
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
                     13:      $                   SMLSIZ
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                     17:      $                   K( * ), PERM( LDGCOL, * )
                     18:       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
                     19:      $                   DIFL( LDU, * ), DIFR( LDU, * ),
                     20:      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
                     21:      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
                     22:      $                   Z( LDU, * )
                     23: *     ..
                     24: *
                     25: *  Purpose
                     26: *  =======
                     27: *
                     28: *  DLALSA is an itermediate step in solving the least squares problem
                     29: *  by computing the SVD of the coefficient matrix in compact form (The
                     30: *  singular vectors are computed as products of simple orthorgonal
                     31: *  matrices.).
                     32: *
                     33: *  If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
                     34: *  matrix of an upper bidiagonal matrix to the right hand side; and if
                     35: *  ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
                     36: *  right hand side. The singular vector matrices were generated in
                     37: *  compact form by DLALSA.
                     38: *
                     39: *  Arguments
                     40: *  =========
                     41: *
                     42: *
                     43: *  ICOMPQ (input) INTEGER
                     44: *         Specifies whether the left or the right singular vector
                     45: *         matrix is involved.
                     46: *         = 0: Left singular vector matrix
                     47: *         = 1: Right singular vector matrix
                     48: *
                     49: *  SMLSIZ (input) INTEGER
                     50: *         The maximum size of the subproblems at the bottom of the
                     51: *         computation tree.
                     52: *
                     53: *  N      (input) INTEGER
                     54: *         The row and column dimensions of the upper bidiagonal matrix.
                     55: *
                     56: *  NRHS   (input) INTEGER
                     57: *         The number of columns of B and BX. NRHS must be at least 1.
                     58: *
                     59: *  B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
                     60: *         On input, B contains the right hand sides of the least
                     61: *         squares problem in rows 1 through M.
                     62: *         On output, B contains the solution X in rows 1 through N.
                     63: *
                     64: *  LDB    (input) INTEGER
                     65: *         The leading dimension of B in the calling subprogram.
                     66: *         LDB must be at least max(1,MAX( M, N ) ).
                     67: *
                     68: *  BX     (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
                     69: *         On exit, the result of applying the left or right singular
                     70: *         vector matrix to B.
                     71: *
                     72: *  LDBX   (input) INTEGER
                     73: *         The leading dimension of BX.
                     74: *
                     75: *  U      (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
                     76: *         On entry, U contains the left singular vector matrices of all
                     77: *         subproblems at the bottom level.
                     78: *
                     79: *  LDU    (input) INTEGER, LDU = > N.
                     80: *         The leading dimension of arrays U, VT, DIFL, DIFR,
                     81: *         POLES, GIVNUM, and Z.
                     82: *
                     83: *  VT     (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
                     84: *         On entry, VT' contains the right singular vector matrices of
                     85: *         all subproblems at the bottom level.
                     86: *
                     87: *  K      (input) INTEGER array, dimension ( N ).
                     88: *
                     89: *  DIFL   (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
                     90: *         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
                     91: *
                     92: *  DIFR   (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                     93: *         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
                     94: *         distances between singular values on the I-th level and
                     95: *         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
                     96: *         record the normalizing factors of the right singular vectors
                     97: *         matrices of subproblems on I-th level.
                     98: *
                     99: *  Z      (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
                    100: *         On entry, Z(1, I) contains the components of the deflation-
                    101: *         adjusted updating row vector for subproblems on the I-th
                    102: *         level.
                    103: *
                    104: *  POLES  (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    105: *         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
                    106: *         singular values involved in the secular equations on the I-th
                    107: *         level.
                    108: *
                    109: *  GIVPTR (input) INTEGER array, dimension ( N ).
                    110: *         On entry, GIVPTR( I ) records the number of Givens
                    111: *         rotations performed on the I-th problem on the computation
                    112: *         tree.
                    113: *
                    114: *  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
                    115: *         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
                    116: *         locations of Givens rotations performed on the I-th level on
                    117: *         the computation tree.
                    118: *
                    119: *  LDGCOL (input) INTEGER, LDGCOL = > N.
                    120: *         The leading dimension of arrays GIVCOL and PERM.
                    121: *
                    122: *  PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ).
                    123: *         On entry, PERM(*, I) records permutations done on the I-th
                    124: *         level of the computation tree.
                    125: *
                    126: *  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    127: *         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
                    128: *         values of Givens rotations performed on the I-th level on the
                    129: *         computation tree.
                    130: *
                    131: *  C      (input) DOUBLE PRECISION array, dimension ( N ).
                    132: *         On entry, if the I-th subproblem is not square,
                    133: *         C( I ) contains the C-value of a Givens rotation related to
                    134: *         the right null space of the I-th subproblem.
                    135: *
                    136: *  S      (input) DOUBLE PRECISION array, dimension ( N ).
                    137: *         On entry, if the I-th subproblem is not square,
                    138: *         S( I ) contains the S-value of a Givens rotation related to
                    139: *         the right null space of the I-th subproblem.
                    140: *
                    141: *  WORK   (workspace) DOUBLE PRECISION array.
                    142: *         The dimension must be at least N.
                    143: *
                    144: *  IWORK  (workspace) INTEGER array.
                    145: *         The dimension must be at least 3 * N
                    146: *
                    147: *  INFO   (output) INTEGER
                    148: *          = 0:  successful exit.
                    149: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    150: *
                    151: *  Further Details
                    152: *  ===============
                    153: *
                    154: *  Based on contributions by
                    155: *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    156: *       California at Berkeley, USA
                    157: *     Osni Marques, LBNL/NERSC, USA
                    158: *
                    159: *  =====================================================================
                    160: *
                    161: *     .. Parameters ..
                    162:       DOUBLE PRECISION   ZERO, ONE
                    163:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    164: *     ..
                    165: *     .. Local Scalars ..
                    166:       INTEGER            I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2,
                    167:      $                   ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL,
                    168:      $                   NR, NRF, NRP1, SQRE
                    169: *     ..
                    170: *     .. External Subroutines ..
                    171:       EXTERNAL           DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
                    172: *     ..
                    173: *     .. Executable Statements ..
                    174: *
                    175: *     Test the input parameters.
                    176: *
                    177:       INFO = 0
                    178: *
                    179:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    180:          INFO = -1
                    181:       ELSE IF( SMLSIZ.LT.3 ) THEN
                    182:          INFO = -2
                    183:       ELSE IF( N.LT.SMLSIZ ) THEN
                    184:          INFO = -3
                    185:       ELSE IF( NRHS.LT.1 ) THEN
                    186:          INFO = -4
                    187:       ELSE IF( LDB.LT.N ) THEN
                    188:          INFO = -6
                    189:       ELSE IF( LDBX.LT.N ) THEN
                    190:          INFO = -8
                    191:       ELSE IF( LDU.LT.N ) THEN
                    192:          INFO = -10
                    193:       ELSE IF( LDGCOL.LT.N ) THEN
                    194:          INFO = -19
                    195:       END IF
                    196:       IF( INFO.NE.0 ) THEN
                    197:          CALL XERBLA( 'DLALSA', -INFO )
                    198:          RETURN
                    199:       END IF
                    200: *
                    201: *     Book-keeping and  setting up the computation tree.
                    202: *
                    203:       INODE = 1
                    204:       NDIML = INODE + N
                    205:       NDIMR = NDIML + N
                    206: *
                    207:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
                    208:      $             IWORK( NDIMR ), SMLSIZ )
                    209: *
                    210: *     The following code applies back the left singular vector factors.
                    211: *     For applying back the right singular vector factors, go to 50.
                    212: *
                    213:       IF( ICOMPQ.EQ.1 ) THEN
                    214:          GO TO 50
                    215:       END IF
                    216: *
                    217: *     The nodes on the bottom level of the tree were solved
                    218: *     by DLASDQ. The corresponding left and right singular vector
                    219: *     matrices are in explicit form. First apply back the left
                    220: *     singular vector matrices.
                    221: *
                    222:       NDB1 = ( ND+1 ) / 2
                    223:       DO 10 I = NDB1, ND
                    224: *
                    225: *        IC : center row of each node
                    226: *        NL : number of rows of left  subproblem
                    227: *        NR : number of rows of right subproblem
                    228: *        NLF: starting row of the left   subproblem
                    229: *        NRF: starting row of the right  subproblem
                    230: *
                    231:          I1 = I - 1
                    232:          IC = IWORK( INODE+I1 )
                    233:          NL = IWORK( NDIML+I1 )
                    234:          NR = IWORK( NDIMR+I1 )
                    235:          NLF = IC - NL
                    236:          NRF = IC + 1
                    237:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
                    238:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    239:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
                    240:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    241:    10 CONTINUE
                    242: *
                    243: *     Next copy the rows of B that correspond to unchanged rows
                    244: *     in the bidiagonal matrix to BX.
                    245: *
                    246:       DO 20 I = 1, ND
                    247:          IC = IWORK( INODE+I-1 )
                    248:          CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
                    249:    20 CONTINUE
                    250: *
                    251: *     Finally go through the left singular vector matrices of all
                    252: *     the other subproblems bottom-up on the tree.
                    253: *
                    254:       J = 2**NLVL
                    255:       SQRE = 0
                    256: *
                    257:       DO 40 LVL = NLVL, 1, -1
                    258:          LVL2 = 2*LVL - 1
                    259: *
                    260: *        find the first node LF and last node LL on
                    261: *        the current level LVL
                    262: *
                    263:          IF( LVL.EQ.1 ) THEN
                    264:             LF = 1
                    265:             LL = 1
                    266:          ELSE
                    267:             LF = 2**( LVL-1 )
                    268:             LL = 2*LF - 1
                    269:          END IF
                    270:          DO 30 I = LF, LL
                    271:             IM1 = I - 1
                    272:             IC = IWORK( INODE+IM1 )
                    273:             NL = IWORK( NDIML+IM1 )
                    274:             NR = IWORK( NDIMR+IM1 )
                    275:             NLF = IC - NL
                    276:             NRF = IC + 1
                    277:             J = J - 1
                    278:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
                    279:      $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
                    280:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    281:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    282:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    283:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
                    284:      $                   INFO )
                    285:    30    CONTINUE
                    286:    40 CONTINUE
                    287:       GO TO 90
                    288: *
                    289: *     ICOMPQ = 1: applying back the right singular vector factors.
                    290: *
                    291:    50 CONTINUE
                    292: *
                    293: *     First now go through the right singular vector matrices of all
                    294: *     the tree nodes top-down.
                    295: *
                    296:       J = 0
                    297:       DO 70 LVL = 1, NLVL
                    298:          LVL2 = 2*LVL - 1
                    299: *
                    300: *        Find the first node LF and last node LL on
                    301: *        the current level LVL.
                    302: *
                    303:          IF( LVL.EQ.1 ) THEN
                    304:             LF = 1
                    305:             LL = 1
                    306:          ELSE
                    307:             LF = 2**( LVL-1 )
                    308:             LL = 2*LF - 1
                    309:          END IF
                    310:          DO 60 I = LL, LF, -1
                    311:             IM1 = I - 1
                    312:             IC = IWORK( INODE+IM1 )
                    313:             NL = IWORK( NDIML+IM1 )
                    314:             NR = IWORK( NDIMR+IM1 )
                    315:             NLF = IC - NL
                    316:             NRF = IC + 1
                    317:             IF( I.EQ.LL ) THEN
                    318:                SQRE = 0
                    319:             ELSE
                    320:                SQRE = 1
                    321:             END IF
                    322:             J = J + 1
                    323:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
                    324:      $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
                    325:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    326:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    327:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    328:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
                    329:      $                   INFO )
                    330:    60    CONTINUE
                    331:    70 CONTINUE
                    332: *
                    333: *     The nodes on the bottom level of the tree were solved
                    334: *     by DLASDQ. The corresponding right singular vector
                    335: *     matrices are in explicit form. Apply them back.
                    336: *
                    337:       NDB1 = ( ND+1 ) / 2
                    338:       DO 80 I = NDB1, ND
                    339:          I1 = I - 1
                    340:          IC = IWORK( INODE+I1 )
                    341:          NL = IWORK( NDIML+I1 )
                    342:          NR = IWORK( NDIMR+I1 )
                    343:          NLP1 = NL + 1
                    344:          IF( I.EQ.ND ) THEN
                    345:             NRP1 = NR
                    346:          ELSE
                    347:             NRP1 = NR + 1
                    348:          END IF
                    349:          NLF = IC - NL
                    350:          NRF = IC + 1
                    351:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
                    352:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    353:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
                    354:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    355:    80 CONTINUE
                    356: *
                    357:    90 CONTINUE
                    358: *
                    359:       RETURN
                    360: *
                    361: *     End of DLALSA
                    362: *
                    363:       END

CVSweb interface <joel.bertrand@systella.fr>