Annotation of rpl/lapack/lapack/dlalsa.f, revision 1.20

1.12      bertrand    1: *> \brief \b DLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DLALSA + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
                     22: *                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
                     23: *                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
                     24: *                          IWORK, INFO )
1.16      bertrand   25: *
1.9       bertrand   26: *       .. Scalar Arguments ..
                     27: *       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
                     28: *      $                   SMLSIZ
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                     32: *      $                   K( * ), PERM( LDGCOL, * )
                     33: *       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
                     34: *      $                   DIFL( LDU, * ), DIFR( LDU, * ),
                     35: *      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
                     36: *      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
                     37: *      $                   Z( LDU, * )
                     38: *       ..
1.16      bertrand   39: *
1.9       bertrand   40: *
                     41: *> \par Purpose:
                     42: *  =============
                     43: *>
                     44: *> \verbatim
                     45: *>
                     46: *> DLALSA is an itermediate step in solving the least squares problem
                     47: *> by computing the SVD of the coefficient matrix in compact form (The
                     48: *> singular vectors are computed as products of simple orthorgonal
                     49: *> matrices.).
                     50: *>
                     51: *> If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
                     52: *> matrix of an upper bidiagonal matrix to the right hand side; and if
                     53: *> ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
                     54: *> right hand side. The singular vector matrices were generated in
                     55: *> compact form by DLALSA.
                     56: *> \endverbatim
                     57: *
                     58: *  Arguments:
                     59: *  ==========
                     60: *
                     61: *> \param[in] ICOMPQ
                     62: *> \verbatim
                     63: *>          ICOMPQ is INTEGER
                     64: *>         Specifies whether the left or the right singular vector
                     65: *>         matrix is involved.
                     66: *>         = 0: Left singular vector matrix
                     67: *>         = 1: Right singular vector matrix
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] SMLSIZ
                     71: *> \verbatim
                     72: *>          SMLSIZ is INTEGER
                     73: *>         The maximum size of the subproblems at the bottom of the
                     74: *>         computation tree.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] N
                     78: *> \verbatim
                     79: *>          N is INTEGER
                     80: *>         The row and column dimensions of the upper bidiagonal matrix.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] NRHS
                     84: *> \verbatim
                     85: *>          NRHS is INTEGER
                     86: *>         The number of columns of B and BX. NRHS must be at least 1.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] B
                     90: *> \verbatim
                     91: *>          B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
                     92: *>         On input, B contains the right hand sides of the least
                     93: *>         squares problem in rows 1 through M.
                     94: *>         On output, B contains the solution X in rows 1 through N.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] LDB
                     98: *> \verbatim
                     99: *>          LDB is INTEGER
                    100: *>         The leading dimension of B in the calling subprogram.
                    101: *>         LDB must be at least max(1,MAX( M, N ) ).
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[out] BX
                    105: *> \verbatim
                    106: *>          BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
                    107: *>         On exit, the result of applying the left or right singular
                    108: *>         vector matrix to B.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] LDBX
                    112: *> \verbatim
                    113: *>          LDBX is INTEGER
                    114: *>         The leading dimension of BX.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] U
                    118: *> \verbatim
                    119: *>          U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
                    120: *>         On entry, U contains the left singular vector matrices of all
                    121: *>         subproblems at the bottom level.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] LDU
                    125: *> \verbatim
                    126: *>          LDU is INTEGER, LDU = > N.
                    127: *>         The leading dimension of arrays U, VT, DIFL, DIFR,
                    128: *>         POLES, GIVNUM, and Z.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] VT
                    132: *> \verbatim
                    133: *>          VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
                    134: *>         On entry, VT**T contains the right singular vector matrices of
                    135: *>         all subproblems at the bottom level.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] K
                    139: *> \verbatim
                    140: *>          K is INTEGER array, dimension ( N ).
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in] DIFL
                    144: *> \verbatim
                    145: *>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
                    146: *>         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[in] DIFR
                    150: *> \verbatim
                    151: *>          DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    152: *>         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
                    153: *>         distances between singular values on the I-th level and
                    154: *>         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
                    155: *>         record the normalizing factors of the right singular vectors
                    156: *>         matrices of subproblems on I-th level.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[in] Z
                    160: *> \verbatim
                    161: *>          Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
                    162: *>         On entry, Z(1, I) contains the components of the deflation-
                    163: *>         adjusted updating row vector for subproblems on the I-th
                    164: *>         level.
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[in] POLES
                    168: *> \verbatim
                    169: *>          POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    170: *>         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
                    171: *>         singular values involved in the secular equations on the I-th
                    172: *>         level.
                    173: *> \endverbatim
                    174: *>
                    175: *> \param[in] GIVPTR
                    176: *> \verbatim
                    177: *>          GIVPTR is INTEGER array, dimension ( N ).
                    178: *>         On entry, GIVPTR( I ) records the number of Givens
                    179: *>         rotations performed on the I-th problem on the computation
                    180: *>         tree.
                    181: *> \endverbatim
                    182: *>
                    183: *> \param[in] GIVCOL
                    184: *> \verbatim
                    185: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
                    186: *>         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
                    187: *>         locations of Givens rotations performed on the I-th level on
                    188: *>         the computation tree.
                    189: *> \endverbatim
                    190: *>
                    191: *> \param[in] LDGCOL
                    192: *> \verbatim
                    193: *>          LDGCOL is INTEGER, LDGCOL = > N.
                    194: *>         The leading dimension of arrays GIVCOL and PERM.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[in] PERM
                    198: *> \verbatim
                    199: *>          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
                    200: *>         On entry, PERM(*, I) records permutations done on the I-th
                    201: *>         level of the computation tree.
                    202: *> \endverbatim
                    203: *>
                    204: *> \param[in] GIVNUM
                    205: *> \verbatim
                    206: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    207: *>         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
                    208: *>         values of Givens rotations performed on the I-th level on the
                    209: *>         computation tree.
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[in] C
                    213: *> \verbatim
                    214: *>          C is DOUBLE PRECISION array, dimension ( N ).
                    215: *>         On entry, if the I-th subproblem is not square,
                    216: *>         C( I ) contains the C-value of a Givens rotation related to
                    217: *>         the right null space of the I-th subproblem.
                    218: *> \endverbatim
                    219: *>
                    220: *> \param[in] S
                    221: *> \verbatim
                    222: *>          S is DOUBLE PRECISION array, dimension ( N ).
                    223: *>         On entry, if the I-th subproblem is not square,
                    224: *>         S( I ) contains the S-value of a Givens rotation related to
                    225: *>         the right null space of the I-th subproblem.
                    226: *> \endverbatim
                    227: *>
                    228: *> \param[out] WORK
                    229: *> \verbatim
1.18      bertrand  230: *>          WORK is DOUBLE PRECISION array, dimension (N)
1.9       bertrand  231: *> \endverbatim
                    232: *>
                    233: *> \param[out] IWORK
                    234: *> \verbatim
1.18      bertrand  235: *>          IWORK is INTEGER array, dimension (3*N)
1.9       bertrand  236: *> \endverbatim
                    237: *>
                    238: *> \param[out] INFO
                    239: *> \verbatim
                    240: *>          INFO is INTEGER
                    241: *>          = 0:  successful exit.
                    242: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    243: *> \endverbatim
                    244: *
                    245: *  Authors:
                    246: *  ========
                    247: *
1.16      bertrand  248: *> \author Univ. of Tennessee
                    249: *> \author Univ. of California Berkeley
                    250: *> \author Univ. of Colorado Denver
                    251: *> \author NAG Ltd.
1.9       bertrand  252: *
                    253: *> \ingroup doubleOTHERcomputational
                    254: *
                    255: *> \par Contributors:
                    256: *  ==================
                    257: *>
                    258: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    259: *>       California at Berkeley, USA \n
                    260: *>     Osni Marques, LBNL/NERSC, USA \n
                    261: *
                    262: *  =====================================================================
1.1       bertrand  263:       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
                    264:      $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
                    265:      $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
                    266:      $                   IWORK, INFO )
                    267: *
1.20    ! bertrand  268: *  -- LAPACK computational routine --
1.1       bertrand  269: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    270: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    271: *
                    272: *     .. Scalar Arguments ..
                    273:       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
                    274:      $                   SMLSIZ
                    275: *     ..
                    276: *     .. Array Arguments ..
                    277:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                    278:      $                   K( * ), PERM( LDGCOL, * )
                    279:       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
                    280:      $                   DIFL( LDU, * ), DIFR( LDU, * ),
                    281:      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
                    282:      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
                    283:      $                   Z( LDU, * )
                    284: *     ..
                    285: *
                    286: *  =====================================================================
                    287: *
                    288: *     .. Parameters ..
                    289:       DOUBLE PRECISION   ZERO, ONE
                    290:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    291: *     ..
                    292: *     .. Local Scalars ..
                    293:       INTEGER            I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2,
                    294:      $                   ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL,
                    295:      $                   NR, NRF, NRP1, SQRE
                    296: *     ..
                    297: *     .. External Subroutines ..
                    298:       EXTERNAL           DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
                    299: *     ..
                    300: *     .. Executable Statements ..
                    301: *
                    302: *     Test the input parameters.
                    303: *
                    304:       INFO = 0
                    305: *
                    306:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    307:          INFO = -1
                    308:       ELSE IF( SMLSIZ.LT.3 ) THEN
                    309:          INFO = -2
                    310:       ELSE IF( N.LT.SMLSIZ ) THEN
                    311:          INFO = -3
                    312:       ELSE IF( NRHS.LT.1 ) THEN
                    313:          INFO = -4
                    314:       ELSE IF( LDB.LT.N ) THEN
                    315:          INFO = -6
                    316:       ELSE IF( LDBX.LT.N ) THEN
                    317:          INFO = -8
                    318:       ELSE IF( LDU.LT.N ) THEN
                    319:          INFO = -10
                    320:       ELSE IF( LDGCOL.LT.N ) THEN
                    321:          INFO = -19
                    322:       END IF
                    323:       IF( INFO.NE.0 ) THEN
                    324:          CALL XERBLA( 'DLALSA', -INFO )
                    325:          RETURN
                    326:       END IF
                    327: *
                    328: *     Book-keeping and  setting up the computation tree.
                    329: *
                    330:       INODE = 1
                    331:       NDIML = INODE + N
                    332:       NDIMR = NDIML + N
                    333: *
                    334:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
                    335:      $             IWORK( NDIMR ), SMLSIZ )
                    336: *
                    337: *     The following code applies back the left singular vector factors.
                    338: *     For applying back the right singular vector factors, go to 50.
                    339: *
                    340:       IF( ICOMPQ.EQ.1 ) THEN
                    341:          GO TO 50
                    342:       END IF
                    343: *
                    344: *     The nodes on the bottom level of the tree were solved
                    345: *     by DLASDQ. The corresponding left and right singular vector
                    346: *     matrices are in explicit form. First apply back the left
                    347: *     singular vector matrices.
                    348: *
                    349:       NDB1 = ( ND+1 ) / 2
                    350:       DO 10 I = NDB1, ND
                    351: *
                    352: *        IC : center row of each node
                    353: *        NL : number of rows of left  subproblem
                    354: *        NR : number of rows of right subproblem
                    355: *        NLF: starting row of the left   subproblem
                    356: *        NRF: starting row of the right  subproblem
                    357: *
                    358:          I1 = I - 1
                    359:          IC = IWORK( INODE+I1 )
                    360:          NL = IWORK( NDIML+I1 )
                    361:          NR = IWORK( NDIMR+I1 )
                    362:          NLF = IC - NL
                    363:          NRF = IC + 1
                    364:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
                    365:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    366:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
                    367:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    368:    10 CONTINUE
                    369: *
                    370: *     Next copy the rows of B that correspond to unchanged rows
                    371: *     in the bidiagonal matrix to BX.
                    372: *
                    373:       DO 20 I = 1, ND
                    374:          IC = IWORK( INODE+I-1 )
                    375:          CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
                    376:    20 CONTINUE
                    377: *
                    378: *     Finally go through the left singular vector matrices of all
                    379: *     the other subproblems bottom-up on the tree.
                    380: *
                    381:       J = 2**NLVL
                    382:       SQRE = 0
                    383: *
                    384:       DO 40 LVL = NLVL, 1, -1
                    385:          LVL2 = 2*LVL - 1
                    386: *
                    387: *        find the first node LF and last node LL on
                    388: *        the current level LVL
                    389: *
                    390:          IF( LVL.EQ.1 ) THEN
                    391:             LF = 1
                    392:             LL = 1
                    393:          ELSE
                    394:             LF = 2**( LVL-1 )
                    395:             LL = 2*LF - 1
                    396:          END IF
                    397:          DO 30 I = LF, LL
                    398:             IM1 = I - 1
                    399:             IC = IWORK( INODE+IM1 )
                    400:             NL = IWORK( NDIML+IM1 )
                    401:             NR = IWORK( NDIMR+IM1 )
                    402:             NLF = IC - NL
                    403:             NRF = IC + 1
                    404:             J = J - 1
                    405:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
                    406:      $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
                    407:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    408:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    409:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    410:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
                    411:      $                   INFO )
                    412:    30    CONTINUE
                    413:    40 CONTINUE
                    414:       GO TO 90
                    415: *
                    416: *     ICOMPQ = 1: applying back the right singular vector factors.
                    417: *
                    418:    50 CONTINUE
                    419: *
                    420: *     First now go through the right singular vector matrices of all
                    421: *     the tree nodes top-down.
                    422: *
                    423:       J = 0
                    424:       DO 70 LVL = 1, NLVL
                    425:          LVL2 = 2*LVL - 1
                    426: *
                    427: *        Find the first node LF and last node LL on
                    428: *        the current level LVL.
                    429: *
                    430:          IF( LVL.EQ.1 ) THEN
                    431:             LF = 1
                    432:             LL = 1
                    433:          ELSE
                    434:             LF = 2**( LVL-1 )
                    435:             LL = 2*LF - 1
                    436:          END IF
                    437:          DO 60 I = LL, LF, -1
                    438:             IM1 = I - 1
                    439:             IC = IWORK( INODE+IM1 )
                    440:             NL = IWORK( NDIML+IM1 )
                    441:             NR = IWORK( NDIMR+IM1 )
                    442:             NLF = IC - NL
                    443:             NRF = IC + 1
                    444:             IF( I.EQ.LL ) THEN
                    445:                SQRE = 0
                    446:             ELSE
                    447:                SQRE = 1
                    448:             END IF
                    449:             J = J + 1
                    450:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
                    451:      $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
                    452:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    453:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    454:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    455:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
                    456:      $                   INFO )
                    457:    60    CONTINUE
                    458:    70 CONTINUE
                    459: *
                    460: *     The nodes on the bottom level of the tree were solved
                    461: *     by DLASDQ. The corresponding right singular vector
                    462: *     matrices are in explicit form. Apply them back.
                    463: *
                    464:       NDB1 = ( ND+1 ) / 2
                    465:       DO 80 I = NDB1, ND
                    466:          I1 = I - 1
                    467:          IC = IWORK( INODE+I1 )
                    468:          NL = IWORK( NDIML+I1 )
                    469:          NR = IWORK( NDIMR+I1 )
                    470:          NLP1 = NL + 1
                    471:          IF( I.EQ.ND ) THEN
                    472:             NRP1 = NR
                    473:          ELSE
                    474:             NRP1 = NR + 1
                    475:          END IF
                    476:          NLF = IC - NL
                    477:          NRF = IC + 1
                    478:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
                    479:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    480:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
                    481:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    482:    80 CONTINUE
                    483: *
                    484:    90 CONTINUE
                    485: *
                    486:       RETURN
                    487: *
                    488: *     End of DLALSA
                    489: *
                    490:       END

CVSweb interface <joel.bertrand@systella.fr>