Annotation of rpl/lapack/lapack/dlalsa.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
        !             2:      $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
        !             3:      $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
        !             4:      $                   IWORK, INFO )
        !             5: *
        !             6: *  -- LAPACK routine (version 3.2) --
        !             7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             9: *     November 2006
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
        !            13:      $                   SMLSIZ
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
        !            17:      $                   K( * ), PERM( LDGCOL, * )
        !            18:       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
        !            19:      $                   DIFL( LDU, * ), DIFR( LDU, * ),
        !            20:      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
        !            21:      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
        !            22:      $                   Z( LDU, * )
        !            23: *     ..
        !            24: *
        !            25: *  Purpose
        !            26: *  =======
        !            27: *
        !            28: *  DLALSA is an itermediate step in solving the least squares problem
        !            29: *  by computing the SVD of the coefficient matrix in compact form (The
        !            30: *  singular vectors are computed as products of simple orthorgonal
        !            31: *  matrices.).
        !            32: *
        !            33: *  If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
        !            34: *  matrix of an upper bidiagonal matrix to the right hand side; and if
        !            35: *  ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
        !            36: *  right hand side. The singular vector matrices were generated in
        !            37: *  compact form by DLALSA.
        !            38: *
        !            39: *  Arguments
        !            40: *  =========
        !            41: *
        !            42: *
        !            43: *  ICOMPQ (input) INTEGER
        !            44: *         Specifies whether the left or the right singular vector
        !            45: *         matrix is involved.
        !            46: *         = 0: Left singular vector matrix
        !            47: *         = 1: Right singular vector matrix
        !            48: *
        !            49: *  SMLSIZ (input) INTEGER
        !            50: *         The maximum size of the subproblems at the bottom of the
        !            51: *         computation tree.
        !            52: *
        !            53: *  N      (input) INTEGER
        !            54: *         The row and column dimensions of the upper bidiagonal matrix.
        !            55: *
        !            56: *  NRHS   (input) INTEGER
        !            57: *         The number of columns of B and BX. NRHS must be at least 1.
        !            58: *
        !            59: *  B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
        !            60: *         On input, B contains the right hand sides of the least
        !            61: *         squares problem in rows 1 through M.
        !            62: *         On output, B contains the solution X in rows 1 through N.
        !            63: *
        !            64: *  LDB    (input) INTEGER
        !            65: *         The leading dimension of B in the calling subprogram.
        !            66: *         LDB must be at least max(1,MAX( M, N ) ).
        !            67: *
        !            68: *  BX     (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
        !            69: *         On exit, the result of applying the left or right singular
        !            70: *         vector matrix to B.
        !            71: *
        !            72: *  LDBX   (input) INTEGER
        !            73: *         The leading dimension of BX.
        !            74: *
        !            75: *  U      (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
        !            76: *         On entry, U contains the left singular vector matrices of all
        !            77: *         subproblems at the bottom level.
        !            78: *
        !            79: *  LDU    (input) INTEGER, LDU = > N.
        !            80: *         The leading dimension of arrays U, VT, DIFL, DIFR,
        !            81: *         POLES, GIVNUM, and Z.
        !            82: *
        !            83: *  VT     (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
        !            84: *         On entry, VT' contains the right singular vector matrices of
        !            85: *         all subproblems at the bottom level.
        !            86: *
        !            87: *  K      (input) INTEGER array, dimension ( N ).
        !            88: *
        !            89: *  DIFL   (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
        !            90: *         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
        !            91: *
        !            92: *  DIFR   (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
        !            93: *         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
        !            94: *         distances between singular values on the I-th level and
        !            95: *         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
        !            96: *         record the normalizing factors of the right singular vectors
        !            97: *         matrices of subproblems on I-th level.
        !            98: *
        !            99: *  Z      (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
        !           100: *         On entry, Z(1, I) contains the components of the deflation-
        !           101: *         adjusted updating row vector for subproblems on the I-th
        !           102: *         level.
        !           103: *
        !           104: *  POLES  (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
        !           105: *         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
        !           106: *         singular values involved in the secular equations on the I-th
        !           107: *         level.
        !           108: *
        !           109: *  GIVPTR (input) INTEGER array, dimension ( N ).
        !           110: *         On entry, GIVPTR( I ) records the number of Givens
        !           111: *         rotations performed on the I-th problem on the computation
        !           112: *         tree.
        !           113: *
        !           114: *  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
        !           115: *         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
        !           116: *         locations of Givens rotations performed on the I-th level on
        !           117: *         the computation tree.
        !           118: *
        !           119: *  LDGCOL (input) INTEGER, LDGCOL = > N.
        !           120: *         The leading dimension of arrays GIVCOL and PERM.
        !           121: *
        !           122: *  PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ).
        !           123: *         On entry, PERM(*, I) records permutations done on the I-th
        !           124: *         level of the computation tree.
        !           125: *
        !           126: *  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
        !           127: *         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
        !           128: *         values of Givens rotations performed on the I-th level on the
        !           129: *         computation tree.
        !           130: *
        !           131: *  C      (input) DOUBLE PRECISION array, dimension ( N ).
        !           132: *         On entry, if the I-th subproblem is not square,
        !           133: *         C( I ) contains the C-value of a Givens rotation related to
        !           134: *         the right null space of the I-th subproblem.
        !           135: *
        !           136: *  S      (input) DOUBLE PRECISION array, dimension ( N ).
        !           137: *         On entry, if the I-th subproblem is not square,
        !           138: *         S( I ) contains the S-value of a Givens rotation related to
        !           139: *         the right null space of the I-th subproblem.
        !           140: *
        !           141: *  WORK   (workspace) DOUBLE PRECISION array.
        !           142: *         The dimension must be at least N.
        !           143: *
        !           144: *  IWORK  (workspace) INTEGER array.
        !           145: *         The dimension must be at least 3 * N
        !           146: *
        !           147: *  INFO   (output) INTEGER
        !           148: *          = 0:  successful exit.
        !           149: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           150: *
        !           151: *  Further Details
        !           152: *  ===============
        !           153: *
        !           154: *  Based on contributions by
        !           155: *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
        !           156: *       California at Berkeley, USA
        !           157: *     Osni Marques, LBNL/NERSC, USA
        !           158: *
        !           159: *  =====================================================================
        !           160: *
        !           161: *     .. Parameters ..
        !           162:       DOUBLE PRECISION   ZERO, ONE
        !           163:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           164: *     ..
        !           165: *     .. Local Scalars ..
        !           166:       INTEGER            I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2,
        !           167:      $                   ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL,
        !           168:      $                   NR, NRF, NRP1, SQRE
        !           169: *     ..
        !           170: *     .. External Subroutines ..
        !           171:       EXTERNAL           DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
        !           172: *     ..
        !           173: *     .. Executable Statements ..
        !           174: *
        !           175: *     Test the input parameters.
        !           176: *
        !           177:       INFO = 0
        !           178: *
        !           179:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
        !           180:          INFO = -1
        !           181:       ELSE IF( SMLSIZ.LT.3 ) THEN
        !           182:          INFO = -2
        !           183:       ELSE IF( N.LT.SMLSIZ ) THEN
        !           184:          INFO = -3
        !           185:       ELSE IF( NRHS.LT.1 ) THEN
        !           186:          INFO = -4
        !           187:       ELSE IF( LDB.LT.N ) THEN
        !           188:          INFO = -6
        !           189:       ELSE IF( LDBX.LT.N ) THEN
        !           190:          INFO = -8
        !           191:       ELSE IF( LDU.LT.N ) THEN
        !           192:          INFO = -10
        !           193:       ELSE IF( LDGCOL.LT.N ) THEN
        !           194:          INFO = -19
        !           195:       END IF
        !           196:       IF( INFO.NE.0 ) THEN
        !           197:          CALL XERBLA( 'DLALSA', -INFO )
        !           198:          RETURN
        !           199:       END IF
        !           200: *
        !           201: *     Book-keeping and  setting up the computation tree.
        !           202: *
        !           203:       INODE = 1
        !           204:       NDIML = INODE + N
        !           205:       NDIMR = NDIML + N
        !           206: *
        !           207:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
        !           208:      $             IWORK( NDIMR ), SMLSIZ )
        !           209: *
        !           210: *     The following code applies back the left singular vector factors.
        !           211: *     For applying back the right singular vector factors, go to 50.
        !           212: *
        !           213:       IF( ICOMPQ.EQ.1 ) THEN
        !           214:          GO TO 50
        !           215:       END IF
        !           216: *
        !           217: *     The nodes on the bottom level of the tree were solved
        !           218: *     by DLASDQ. The corresponding left and right singular vector
        !           219: *     matrices are in explicit form. First apply back the left
        !           220: *     singular vector matrices.
        !           221: *
        !           222:       NDB1 = ( ND+1 ) / 2
        !           223:       DO 10 I = NDB1, ND
        !           224: *
        !           225: *        IC : center row of each node
        !           226: *        NL : number of rows of left  subproblem
        !           227: *        NR : number of rows of right subproblem
        !           228: *        NLF: starting row of the left   subproblem
        !           229: *        NRF: starting row of the right  subproblem
        !           230: *
        !           231:          I1 = I - 1
        !           232:          IC = IWORK( INODE+I1 )
        !           233:          NL = IWORK( NDIML+I1 )
        !           234:          NR = IWORK( NDIMR+I1 )
        !           235:          NLF = IC - NL
        !           236:          NRF = IC + 1
        !           237:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
        !           238:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
        !           239:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
        !           240:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
        !           241:    10 CONTINUE
        !           242: *
        !           243: *     Next copy the rows of B that correspond to unchanged rows
        !           244: *     in the bidiagonal matrix to BX.
        !           245: *
        !           246:       DO 20 I = 1, ND
        !           247:          IC = IWORK( INODE+I-1 )
        !           248:          CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
        !           249:    20 CONTINUE
        !           250: *
        !           251: *     Finally go through the left singular vector matrices of all
        !           252: *     the other subproblems bottom-up on the tree.
        !           253: *
        !           254:       J = 2**NLVL
        !           255:       SQRE = 0
        !           256: *
        !           257:       DO 40 LVL = NLVL, 1, -1
        !           258:          LVL2 = 2*LVL - 1
        !           259: *
        !           260: *        find the first node LF and last node LL on
        !           261: *        the current level LVL
        !           262: *
        !           263:          IF( LVL.EQ.1 ) THEN
        !           264:             LF = 1
        !           265:             LL = 1
        !           266:          ELSE
        !           267:             LF = 2**( LVL-1 )
        !           268:             LL = 2*LF - 1
        !           269:          END IF
        !           270:          DO 30 I = LF, LL
        !           271:             IM1 = I - 1
        !           272:             IC = IWORK( INODE+IM1 )
        !           273:             NL = IWORK( NDIML+IM1 )
        !           274:             NR = IWORK( NDIMR+IM1 )
        !           275:             NLF = IC - NL
        !           276:             NRF = IC + 1
        !           277:             J = J - 1
        !           278:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
        !           279:      $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
        !           280:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
        !           281:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
        !           282:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
        !           283:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
        !           284:      $                   INFO )
        !           285:    30    CONTINUE
        !           286:    40 CONTINUE
        !           287:       GO TO 90
        !           288: *
        !           289: *     ICOMPQ = 1: applying back the right singular vector factors.
        !           290: *
        !           291:    50 CONTINUE
        !           292: *
        !           293: *     First now go through the right singular vector matrices of all
        !           294: *     the tree nodes top-down.
        !           295: *
        !           296:       J = 0
        !           297:       DO 70 LVL = 1, NLVL
        !           298:          LVL2 = 2*LVL - 1
        !           299: *
        !           300: *        Find the first node LF and last node LL on
        !           301: *        the current level LVL.
        !           302: *
        !           303:          IF( LVL.EQ.1 ) THEN
        !           304:             LF = 1
        !           305:             LL = 1
        !           306:          ELSE
        !           307:             LF = 2**( LVL-1 )
        !           308:             LL = 2*LF - 1
        !           309:          END IF
        !           310:          DO 60 I = LL, LF, -1
        !           311:             IM1 = I - 1
        !           312:             IC = IWORK( INODE+IM1 )
        !           313:             NL = IWORK( NDIML+IM1 )
        !           314:             NR = IWORK( NDIMR+IM1 )
        !           315:             NLF = IC - NL
        !           316:             NRF = IC + 1
        !           317:             IF( I.EQ.LL ) THEN
        !           318:                SQRE = 0
        !           319:             ELSE
        !           320:                SQRE = 1
        !           321:             END IF
        !           322:             J = J + 1
        !           323:             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
        !           324:      $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
        !           325:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
        !           326:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
        !           327:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
        !           328:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
        !           329:      $                   INFO )
        !           330:    60    CONTINUE
        !           331:    70 CONTINUE
        !           332: *
        !           333: *     The nodes on the bottom level of the tree were solved
        !           334: *     by DLASDQ. The corresponding right singular vector
        !           335: *     matrices are in explicit form. Apply them back.
        !           336: *
        !           337:       NDB1 = ( ND+1 ) / 2
        !           338:       DO 80 I = NDB1, ND
        !           339:          I1 = I - 1
        !           340:          IC = IWORK( INODE+I1 )
        !           341:          NL = IWORK( NDIML+I1 )
        !           342:          NR = IWORK( NDIMR+I1 )
        !           343:          NLP1 = NL + 1
        !           344:          IF( I.EQ.ND ) THEN
        !           345:             NRP1 = NR
        !           346:          ELSE
        !           347:             NRP1 = NR + 1
        !           348:          END IF
        !           349:          NLF = IC - NL
        !           350:          NRF = IC + 1
        !           351:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
        !           352:      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
        !           353:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
        !           354:      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
        !           355:    80 CONTINUE
        !           356: *
        !           357:    90 CONTINUE
        !           358: *
        !           359:       RETURN
        !           360: *
        !           361: *     End of DLALSA
        !           362: *
        !           363:       END

CVSweb interface <joel.bertrand@systella.fr>