File:  [local] / rpl / lapack / lapack / dlals0.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:17 2010 UTC (14 years, 1 month ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
    2:      $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
    3:      $                   POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
   12:      $                   LDGNUM, NL, NR, NRHS, SQRE
   13:       DOUBLE PRECISION   C, S
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
   17:       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), DIFL( * ),
   18:      $                   DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ),
   19:      $                   POLES( LDGNUM, * ), WORK( * ), Z( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DLALS0 applies back the multiplying factors of either the left or the
   26: *  right singular vector matrix of a diagonal matrix appended by a row
   27: *  to the right hand side matrix B in solving the least squares problem
   28: *  using the divide-and-conquer SVD approach.
   29: *
   30: *  For the left singular vector matrix, three types of orthogonal
   31: *  matrices are involved:
   32: *
   33: *  (1L) Givens rotations: the number of such rotations is GIVPTR; the
   34: *       pairs of columns/rows they were applied to are stored in GIVCOL;
   35: *       and the C- and S-values of these rotations are stored in GIVNUM.
   36: *
   37: *  (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
   38: *       row, and for J=2:N, PERM(J)-th row of B is to be moved to the
   39: *       J-th row.
   40: *
   41: *  (3L) The left singular vector matrix of the remaining matrix.
   42: *
   43: *  For the right singular vector matrix, four types of orthogonal
   44: *  matrices are involved:
   45: *
   46: *  (1R) The right singular vector matrix of the remaining matrix.
   47: *
   48: *  (2R) If SQRE = 1, one extra Givens rotation to generate the right
   49: *       null space.
   50: *
   51: *  (3R) The inverse transformation of (2L).
   52: *
   53: *  (4R) The inverse transformation of (1L).
   54: *
   55: *  Arguments
   56: *  =========
   57: *
   58: *  ICOMPQ (input) INTEGER
   59: *         Specifies whether singular vectors are to be computed in
   60: *         factored form:
   61: *         = 0: Left singular vector matrix.
   62: *         = 1: Right singular vector matrix.
   63: *
   64: *  NL     (input) INTEGER
   65: *         The row dimension of the upper block. NL >= 1.
   66: *
   67: *  NR     (input) INTEGER
   68: *         The row dimension of the lower block. NR >= 1.
   69: *
   70: *  SQRE   (input) INTEGER
   71: *         = 0: the lower block is an NR-by-NR square matrix.
   72: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
   73: *
   74: *         The bidiagonal matrix has row dimension N = NL + NR + 1,
   75: *         and column dimension M = N + SQRE.
   76: *
   77: *  NRHS   (input) INTEGER
   78: *         The number of columns of B and BX. NRHS must be at least 1.
   79: *
   80: *  B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
   81: *         On input, B contains the right hand sides of the least
   82: *         squares problem in rows 1 through M. On output, B contains
   83: *         the solution X in rows 1 through N.
   84: *
   85: *  LDB    (input) INTEGER
   86: *         The leading dimension of B. LDB must be at least
   87: *         max(1,MAX( M, N ) ).
   88: *
   89: *  BX     (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
   90: *
   91: *  LDBX   (input) INTEGER
   92: *         The leading dimension of BX.
   93: *
   94: *  PERM   (input) INTEGER array, dimension ( N )
   95: *         The permutations (from deflation and sorting) applied
   96: *         to the two blocks.
   97: *
   98: *  GIVPTR (input) INTEGER
   99: *         The number of Givens rotations which took place in this
  100: *         subproblem.
  101: *
  102: *  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
  103: *         Each pair of numbers indicates a pair of rows/columns
  104: *         involved in a Givens rotation.
  105: *
  106: *  LDGCOL (input) INTEGER
  107: *         The leading dimension of GIVCOL, must be at least N.
  108: *
  109: *  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
  110: *         Each number indicates the C or S value used in the
  111: *         corresponding Givens rotation.
  112: *
  113: *  LDGNUM (input) INTEGER
  114: *         The leading dimension of arrays DIFR, POLES and
  115: *         GIVNUM, must be at least K.
  116: *
  117: *  POLES  (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
  118: *         On entry, POLES(1:K, 1) contains the new singular
  119: *         values obtained from solving the secular equation, and
  120: *         POLES(1:K, 2) is an array containing the poles in the secular
  121: *         equation.
  122: *
  123: *  DIFL   (input) DOUBLE PRECISION array, dimension ( K ).
  124: *         On entry, DIFL(I) is the distance between I-th updated
  125: *         (undeflated) singular value and the I-th (undeflated) old
  126: *         singular value.
  127: *
  128: *  DIFR   (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
  129: *         On entry, DIFR(I, 1) contains the distances between I-th
  130: *         updated (undeflated) singular value and the I+1-th
  131: *         (undeflated) old singular value. And DIFR(I, 2) is the
  132: *         normalizing factor for the I-th right singular vector.
  133: *
  134: *  Z      (input) DOUBLE PRECISION array, dimension ( K )
  135: *         Contain the components of the deflation-adjusted updating row
  136: *         vector.
  137: *
  138: *  K      (input) INTEGER
  139: *         Contains the dimension of the non-deflated matrix,
  140: *         This is the order of the related secular equation. 1 <= K <=N.
  141: *
  142: *  C      (input) DOUBLE PRECISION
  143: *         C contains garbage if SQRE =0 and the C-value of a Givens
  144: *         rotation related to the right null space if SQRE = 1.
  145: *
  146: *  S      (input) DOUBLE PRECISION
  147: *         S contains garbage if SQRE =0 and the S-value of a Givens
  148: *         rotation related to the right null space if SQRE = 1.
  149: *
  150: *  WORK   (workspace) DOUBLE PRECISION array, dimension ( K )
  151: *
  152: *  INFO   (output) INTEGER
  153: *          = 0:  successful exit.
  154: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  155: *
  156: *  Further Details
  157: *  ===============
  158: *
  159: *  Based on contributions by
  160: *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  161: *       California at Berkeley, USA
  162: *     Osni Marques, LBNL/NERSC, USA
  163: *
  164: *  =====================================================================
  165: *
  166: *     .. Parameters ..
  167:       DOUBLE PRECISION   ONE, ZERO, NEGONE
  168:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 )
  169: *     ..
  170: *     .. Local Scalars ..
  171:       INTEGER            I, J, M, N, NLP1
  172:       DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DROT, DSCAL,
  176:      $                   XERBLA
  177: *     ..
  178: *     .. External Functions ..
  179:       DOUBLE PRECISION   DLAMC3, DNRM2
  180:       EXTERNAL           DLAMC3, DNRM2
  181: *     ..
  182: *     .. Intrinsic Functions ..
  183:       INTRINSIC          MAX
  184: *     ..
  185: *     .. Executable Statements ..
  186: *
  187: *     Test the input parameters.
  188: *
  189:       INFO = 0
  190: *
  191:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  192:          INFO = -1
  193:       ELSE IF( NL.LT.1 ) THEN
  194:          INFO = -2
  195:       ELSE IF( NR.LT.1 ) THEN
  196:          INFO = -3
  197:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  198:          INFO = -4
  199:       END IF
  200: *
  201:       N = NL + NR + 1
  202: *
  203:       IF( NRHS.LT.1 ) THEN
  204:          INFO = -5
  205:       ELSE IF( LDB.LT.N ) THEN
  206:          INFO = -7
  207:       ELSE IF( LDBX.LT.N ) THEN
  208:          INFO = -9
  209:       ELSE IF( GIVPTR.LT.0 ) THEN
  210:          INFO = -11
  211:       ELSE IF( LDGCOL.LT.N ) THEN
  212:          INFO = -13
  213:       ELSE IF( LDGNUM.LT.N ) THEN
  214:          INFO = -15
  215:       ELSE IF( K.LT.1 ) THEN
  216:          INFO = -20
  217:       END IF
  218:       IF( INFO.NE.0 ) THEN
  219:          CALL XERBLA( 'DLALS0', -INFO )
  220:          RETURN
  221:       END IF
  222: *
  223:       M = N + SQRE
  224:       NLP1 = NL + 1
  225: *
  226:       IF( ICOMPQ.EQ.0 ) THEN
  227: *
  228: *        Apply back orthogonal transformations from the left.
  229: *
  230: *        Step (1L): apply back the Givens rotations performed.
  231: *
  232:          DO 10 I = 1, GIVPTR
  233:             CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
  234:      $                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
  235:      $                 GIVNUM( I, 1 ) )
  236:    10    CONTINUE
  237: *
  238: *        Step (2L): permute rows of B.
  239: *
  240:          CALL DCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )
  241:          DO 20 I = 2, N
  242:             CALL DCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
  243:    20    CONTINUE
  244: *
  245: *        Step (3L): apply the inverse of the left singular vector
  246: *        matrix to BX.
  247: *
  248:          IF( K.EQ.1 ) THEN
  249:             CALL DCOPY( NRHS, BX, LDBX, B, LDB )
  250:             IF( Z( 1 ).LT.ZERO ) THEN
  251:                CALL DSCAL( NRHS, NEGONE, B, LDB )
  252:             END IF
  253:          ELSE
  254:             DO 50 J = 1, K
  255:                DIFLJ = DIFL( J )
  256:                DJ = POLES( J, 1 )
  257:                DSIGJ = -POLES( J, 2 )
  258:                IF( J.LT.K ) THEN
  259:                   DIFRJ = -DIFR( J, 1 )
  260:                   DSIGJP = -POLES( J+1, 2 )
  261:                END IF
  262:                IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )
  263:      $              THEN
  264:                   WORK( J ) = ZERO
  265:                ELSE
  266:                   WORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /
  267:      $                        ( POLES( J, 2 )+DJ )
  268:                END IF
  269:                DO 30 I = 1, J - 1
  270:                   IF( ( Z( I ).EQ.ZERO ) .OR.
  271:      $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
  272:                      WORK( I ) = ZERO
  273:                   ELSE
  274:                      WORK( I ) = POLES( I, 2 )*Z( I ) /
  275:      $                           ( DLAMC3( POLES( I, 2 ), DSIGJ )-
  276:      $                           DIFLJ ) / ( POLES( I, 2 )+DJ )
  277:                   END IF
  278:    30          CONTINUE
  279:                DO 40 I = J + 1, K
  280:                   IF( ( Z( I ).EQ.ZERO ) .OR.
  281:      $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
  282:                      WORK( I ) = ZERO
  283:                   ELSE
  284:                      WORK( I ) = POLES( I, 2 )*Z( I ) /
  285:      $                           ( DLAMC3( POLES( I, 2 ), DSIGJP )+
  286:      $                           DIFRJ ) / ( POLES( I, 2 )+DJ )
  287:                   END IF
  288:    40          CONTINUE
  289:                WORK( 1 ) = NEGONE
  290:                TEMP = DNRM2( K, WORK, 1 )
  291:                CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
  292:      $                     B( J, 1 ), LDB )
  293:                CALL DLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ),
  294:      $                      LDB, INFO )
  295:    50       CONTINUE
  296:          END IF
  297: *
  298: *        Move the deflated rows of BX to B also.
  299: *
  300:          IF( K.LT.MAX( M, N ) )
  301:      $      CALL DLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX,
  302:      $                   B( K+1, 1 ), LDB )
  303:       ELSE
  304: *
  305: *        Apply back the right orthogonal transformations.
  306: *
  307: *        Step (1R): apply back the new right singular vector matrix
  308: *        to B.
  309: *
  310:          IF( K.EQ.1 ) THEN
  311:             CALL DCOPY( NRHS, B, LDB, BX, LDBX )
  312:          ELSE
  313:             DO 80 J = 1, K
  314:                DSIGJ = POLES( J, 2 )
  315:                IF( Z( J ).EQ.ZERO ) THEN
  316:                   WORK( J ) = ZERO
  317:                ELSE
  318:                   WORK( J ) = -Z( J ) / DIFL( J ) /
  319:      $                        ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
  320:                END IF
  321:                DO 60 I = 1, J - 1
  322:                   IF( Z( J ).EQ.ZERO ) THEN
  323:                      WORK( I ) = ZERO
  324:                   ELSE
  325:                      WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I+1,
  326:      $                           2 ) )-DIFR( I, 1 ) ) /
  327:      $                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
  328:                   END IF
  329:    60          CONTINUE
  330:                DO 70 I = J + 1, K
  331:                   IF( Z( J ).EQ.ZERO ) THEN
  332:                      WORK( I ) = ZERO
  333:                   ELSE
  334:                      WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I,
  335:      $                           2 ) )-DIFL( I ) ) /
  336:      $                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
  337:                   END IF
  338:    70          CONTINUE
  339:                CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
  340:      $                     BX( J, 1 ), LDBX )
  341:    80       CONTINUE
  342:          END IF
  343: *
  344: *        Step (2R): if SQRE = 1, apply back the rotation that is
  345: *        related to the right null space of the subproblem.
  346: *
  347:          IF( SQRE.EQ.1 ) THEN
  348:             CALL DCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
  349:             CALL DROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )
  350:          END IF
  351:          IF( K.LT.MAX( M, N ) )
  352:      $      CALL DLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB, BX( K+1, 1 ),
  353:      $                   LDBX )
  354: *
  355: *        Step (3R): permute rows of B.
  356: *
  357:          CALL DCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )
  358:          IF( SQRE.EQ.1 ) THEN
  359:             CALL DCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
  360:          END IF
  361:          DO 90 I = 2, N
  362:             CALL DCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
  363:    90    CONTINUE
  364: *
  365: *        Step (4R): apply back the Givens rotations performed.
  366: *
  367:          DO 100 I = GIVPTR, 1, -1
  368:             CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
  369:      $                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
  370:      $                 -GIVNUM( I, 1 ) )
  371:   100    CONTINUE
  372:       END IF
  373: *
  374:       RETURN
  375: *
  376: *     End of DLALS0
  377: *
  378:       END

CVSweb interface <joel.bertrand@systella.fr>