Annotation of rpl/lapack/lapack/dlals0.f, revision 1.14

1.11      bertrand    1: *> \brief \b DLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLALS0 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlals0.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlals0.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlals0.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
                     22: *                          PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
                     23: *                          POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
                     27: *      $                   LDGNUM, NL, NR, NRHS, SQRE
                     28: *       DOUBLE PRECISION   C, S
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
                     32: *       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), DIFL( * ),
                     33: *      $                   DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ),
                     34: *      $                   POLES( LDGNUM, * ), WORK( * ), Z( * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DLALS0 applies back the multiplying factors of either the left or the
                     44: *> right singular vector matrix of a diagonal matrix appended by a row
                     45: *> to the right hand side matrix B in solving the least squares problem
                     46: *> using the divide-and-conquer SVD approach.
                     47: *>
                     48: *> For the left singular vector matrix, three types of orthogonal
                     49: *> matrices are involved:
                     50: *>
                     51: *> (1L) Givens rotations: the number of such rotations is GIVPTR; the
                     52: *>      pairs of columns/rows they were applied to are stored in GIVCOL;
                     53: *>      and the C- and S-values of these rotations are stored in GIVNUM.
                     54: *>
                     55: *> (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
                     56: *>      row, and for J=2:N, PERM(J)-th row of B is to be moved to the
                     57: *>      J-th row.
                     58: *>
                     59: *> (3L) The left singular vector matrix of the remaining matrix.
                     60: *>
                     61: *> For the right singular vector matrix, four types of orthogonal
                     62: *> matrices are involved:
                     63: *>
                     64: *> (1R) The right singular vector matrix of the remaining matrix.
                     65: *>
                     66: *> (2R) If SQRE = 1, one extra Givens rotation to generate the right
                     67: *>      null space.
                     68: *>
                     69: *> (3R) The inverse transformation of (2L).
                     70: *>
                     71: *> (4R) The inverse transformation of (1L).
                     72: *> \endverbatim
                     73: *
                     74: *  Arguments:
                     75: *  ==========
                     76: *
                     77: *> \param[in] ICOMPQ
                     78: *> \verbatim
                     79: *>          ICOMPQ is INTEGER
                     80: *>         Specifies whether singular vectors are to be computed in
                     81: *>         factored form:
                     82: *>         = 0: Left singular vector matrix.
                     83: *>         = 1: Right singular vector matrix.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] NL
                     87: *> \verbatim
                     88: *>          NL is INTEGER
                     89: *>         The row dimension of the upper block. NL >= 1.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] NR
                     93: *> \verbatim
                     94: *>          NR is INTEGER
                     95: *>         The row dimension of the lower block. NR >= 1.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] SQRE
                     99: *> \verbatim
                    100: *>          SQRE is INTEGER
                    101: *>         = 0: the lower block is an NR-by-NR square matrix.
                    102: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
                    103: *>
                    104: *>         The bidiagonal matrix has row dimension N = NL + NR + 1,
                    105: *>         and column dimension M = N + SQRE.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] NRHS
                    109: *> \verbatim
                    110: *>          NRHS is INTEGER
                    111: *>         The number of columns of B and BX. NRHS must be at least 1.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in,out] B
                    115: *> \verbatim
                    116: *>          B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
                    117: *>         On input, B contains the right hand sides of the least
                    118: *>         squares problem in rows 1 through M. On output, B contains
                    119: *>         the solution X in rows 1 through N.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] LDB
                    123: *> \verbatim
                    124: *>          LDB is INTEGER
                    125: *>         The leading dimension of B. LDB must be at least
                    126: *>         max(1,MAX( M, N ) ).
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[out] BX
                    130: *> \verbatim
                    131: *>          BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LDBX
                    135: *> \verbatim
                    136: *>          LDBX is INTEGER
                    137: *>         The leading dimension of BX.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] PERM
                    141: *> \verbatim
                    142: *>          PERM is INTEGER array, dimension ( N )
                    143: *>         The permutations (from deflation and sorting) applied
                    144: *>         to the two blocks.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in] GIVPTR
                    148: *> \verbatim
                    149: *>          GIVPTR is INTEGER
                    150: *>         The number of Givens rotations which took place in this
                    151: *>         subproblem.
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[in] GIVCOL
                    155: *> \verbatim
                    156: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
                    157: *>         Each pair of numbers indicates a pair of rows/columns
                    158: *>         involved in a Givens rotation.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in] LDGCOL
                    162: *> \verbatim
                    163: *>          LDGCOL is INTEGER
                    164: *>         The leading dimension of GIVCOL, must be at least N.
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[in] GIVNUM
                    168: *> \verbatim
                    169: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
                    170: *>         Each number indicates the C or S value used in the
                    171: *>         corresponding Givens rotation.
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[in] LDGNUM
                    175: *> \verbatim
                    176: *>          LDGNUM is INTEGER
                    177: *>         The leading dimension of arrays DIFR, POLES and
                    178: *>         GIVNUM, must be at least K.
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[in] POLES
                    182: *> \verbatim
                    183: *>          POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
                    184: *>         On entry, POLES(1:K, 1) contains the new singular
                    185: *>         values obtained from solving the secular equation, and
                    186: *>         POLES(1:K, 2) is an array containing the poles in the secular
                    187: *>         equation.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[in] DIFL
                    191: *> \verbatim
                    192: *>          DIFL is DOUBLE PRECISION array, dimension ( K ).
                    193: *>         On entry, DIFL(I) is the distance between I-th updated
                    194: *>         (undeflated) singular value and the I-th (undeflated) old
                    195: *>         singular value.
                    196: *> \endverbatim
                    197: *>
                    198: *> \param[in] DIFR
                    199: *> \verbatim
                    200: *>          DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
                    201: *>         On entry, DIFR(I, 1) contains the distances between I-th
                    202: *>         updated (undeflated) singular value and the I+1-th
                    203: *>         (undeflated) old singular value. And DIFR(I, 2) is the
                    204: *>         normalizing factor for the I-th right singular vector.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[in] Z
                    208: *> \verbatim
                    209: *>          Z is DOUBLE PRECISION array, dimension ( K )
                    210: *>         Contain the components of the deflation-adjusted updating row
                    211: *>         vector.
                    212: *> \endverbatim
                    213: *>
                    214: *> \param[in] K
                    215: *> \verbatim
                    216: *>          K is INTEGER
                    217: *>         Contains the dimension of the non-deflated matrix,
                    218: *>         This is the order of the related secular equation. 1 <= K <=N.
                    219: *> \endverbatim
                    220: *>
                    221: *> \param[in] C
                    222: *> \verbatim
                    223: *>          C is DOUBLE PRECISION
                    224: *>         C contains garbage if SQRE =0 and the C-value of a Givens
                    225: *>         rotation related to the right null space if SQRE = 1.
                    226: *> \endverbatim
                    227: *>
                    228: *> \param[in] S
                    229: *> \verbatim
                    230: *>          S is DOUBLE PRECISION
                    231: *>         S contains garbage if SQRE =0 and the S-value of a Givens
                    232: *>         rotation related to the right null space if SQRE = 1.
                    233: *> \endverbatim
                    234: *>
                    235: *> \param[out] WORK
                    236: *> \verbatim
                    237: *>          WORK is DOUBLE PRECISION array, dimension ( K )
                    238: *> \endverbatim
                    239: *>
                    240: *> \param[out] INFO
                    241: *> \verbatim
                    242: *>          INFO is INTEGER
                    243: *>          = 0:  successful exit.
                    244: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    245: *> \endverbatim
                    246: *
                    247: *  Authors:
                    248: *  ========
                    249: *
                    250: *> \author Univ. of Tennessee 
                    251: *> \author Univ. of California Berkeley 
                    252: *> \author Univ. of Colorado Denver 
                    253: *> \author NAG Ltd. 
                    254: *
1.14    ! bertrand  255: *> \date November 2015
1.8       bertrand  256: *
                    257: *> \ingroup doubleOTHERcomputational
                    258: *
                    259: *> \par Contributors:
                    260: *  ==================
                    261: *>
                    262: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    263: *>       California at Berkeley, USA \n
                    264: *>     Osni Marques, LBNL/NERSC, USA \n
                    265: *
                    266: *  =====================================================================
1.1       bertrand  267:       SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
                    268:      $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
                    269:      $                   POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO )
                    270: *
1.14    ! bertrand  271: *  -- LAPACK computational routine (version 3.6.0) --
1.1       bertrand  272: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    273: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14    ! bertrand  274: *     November 2015
1.1       bertrand  275: *
                    276: *     .. Scalar Arguments ..
                    277:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
                    278:      $                   LDGNUM, NL, NR, NRHS, SQRE
                    279:       DOUBLE PRECISION   C, S
                    280: *     ..
                    281: *     .. Array Arguments ..
                    282:       INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
                    283:       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), DIFL( * ),
                    284:      $                   DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ),
                    285:      $                   POLES( LDGNUM, * ), WORK( * ), Z( * )
                    286: *     ..
                    287: *
                    288: *  =====================================================================
                    289: *
                    290: *     .. Parameters ..
                    291:       DOUBLE PRECISION   ONE, ZERO, NEGONE
                    292:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 )
                    293: *     ..
                    294: *     .. Local Scalars ..
                    295:       INTEGER            I, J, M, N, NLP1
                    296:       DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
                    297: *     ..
                    298: *     .. External Subroutines ..
                    299:       EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DROT, DSCAL,
                    300:      $                   XERBLA
                    301: *     ..
                    302: *     .. External Functions ..
                    303:       DOUBLE PRECISION   DLAMC3, DNRM2
                    304:       EXTERNAL           DLAMC3, DNRM2
                    305: *     ..
                    306: *     .. Intrinsic Functions ..
                    307:       INTRINSIC          MAX
                    308: *     ..
                    309: *     .. Executable Statements ..
                    310: *
                    311: *     Test the input parameters.
                    312: *
                    313:       INFO = 0
1.14    ! bertrand  314:       N = NL + NR + 1
1.1       bertrand  315: *
                    316:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    317:          INFO = -1
                    318:       ELSE IF( NL.LT.1 ) THEN
                    319:          INFO = -2
                    320:       ELSE IF( NR.LT.1 ) THEN
                    321:          INFO = -3
                    322:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    323:          INFO = -4
1.14    ! bertrand  324:       ELSE IF( NRHS.LT.1 ) THEN
1.1       bertrand  325:          INFO = -5
                    326:       ELSE IF( LDB.LT.N ) THEN
                    327:          INFO = -7
                    328:       ELSE IF( LDBX.LT.N ) THEN
                    329:          INFO = -9
                    330:       ELSE IF( GIVPTR.LT.0 ) THEN
                    331:          INFO = -11
                    332:       ELSE IF( LDGCOL.LT.N ) THEN
                    333:          INFO = -13
                    334:       ELSE IF( LDGNUM.LT.N ) THEN
                    335:          INFO = -15
                    336:       ELSE IF( K.LT.1 ) THEN
                    337:          INFO = -20
                    338:       END IF
                    339:       IF( INFO.NE.0 ) THEN
                    340:          CALL XERBLA( 'DLALS0', -INFO )
                    341:          RETURN
                    342:       END IF
                    343: *
                    344:       M = N + SQRE
                    345:       NLP1 = NL + 1
                    346: *
                    347:       IF( ICOMPQ.EQ.0 ) THEN
                    348: *
                    349: *        Apply back orthogonal transformations from the left.
                    350: *
                    351: *        Step (1L): apply back the Givens rotations performed.
                    352: *
                    353:          DO 10 I = 1, GIVPTR
                    354:             CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
                    355:      $                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
                    356:      $                 GIVNUM( I, 1 ) )
                    357:    10    CONTINUE
                    358: *
                    359: *        Step (2L): permute rows of B.
                    360: *
                    361:          CALL DCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )
                    362:          DO 20 I = 2, N
                    363:             CALL DCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
                    364:    20    CONTINUE
                    365: *
                    366: *        Step (3L): apply the inverse of the left singular vector
                    367: *        matrix to BX.
                    368: *
                    369:          IF( K.EQ.1 ) THEN
                    370:             CALL DCOPY( NRHS, BX, LDBX, B, LDB )
                    371:             IF( Z( 1 ).LT.ZERO ) THEN
                    372:                CALL DSCAL( NRHS, NEGONE, B, LDB )
                    373:             END IF
                    374:          ELSE
                    375:             DO 50 J = 1, K
                    376:                DIFLJ = DIFL( J )
                    377:                DJ = POLES( J, 1 )
                    378:                DSIGJ = -POLES( J, 2 )
                    379:                IF( J.LT.K ) THEN
                    380:                   DIFRJ = -DIFR( J, 1 )
                    381:                   DSIGJP = -POLES( J+1, 2 )
                    382:                END IF
                    383:                IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )
                    384:      $              THEN
                    385:                   WORK( J ) = ZERO
                    386:                ELSE
                    387:                   WORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /
                    388:      $                        ( POLES( J, 2 )+DJ )
                    389:                END IF
                    390:                DO 30 I = 1, J - 1
                    391:                   IF( ( Z( I ).EQ.ZERO ) .OR.
                    392:      $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
                    393:                      WORK( I ) = ZERO
                    394:                   ELSE
                    395:                      WORK( I ) = POLES( I, 2 )*Z( I ) /
                    396:      $                           ( DLAMC3( POLES( I, 2 ), DSIGJ )-
                    397:      $                           DIFLJ ) / ( POLES( I, 2 )+DJ )
                    398:                   END IF
                    399:    30          CONTINUE
                    400:                DO 40 I = J + 1, K
                    401:                   IF( ( Z( I ).EQ.ZERO ) .OR.
                    402:      $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
                    403:                      WORK( I ) = ZERO
                    404:                   ELSE
                    405:                      WORK( I ) = POLES( I, 2 )*Z( I ) /
                    406:      $                           ( DLAMC3( POLES( I, 2 ), DSIGJP )+
                    407:      $                           DIFRJ ) / ( POLES( I, 2 )+DJ )
                    408:                   END IF
                    409:    40          CONTINUE
                    410:                WORK( 1 ) = NEGONE
                    411:                TEMP = DNRM2( K, WORK, 1 )
                    412:                CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
                    413:      $                     B( J, 1 ), LDB )
                    414:                CALL DLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ),
                    415:      $                      LDB, INFO )
                    416:    50       CONTINUE
                    417:          END IF
                    418: *
                    419: *        Move the deflated rows of BX to B also.
                    420: *
                    421:          IF( K.LT.MAX( M, N ) )
                    422:      $      CALL DLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX,
                    423:      $                   B( K+1, 1 ), LDB )
                    424:       ELSE
                    425: *
                    426: *        Apply back the right orthogonal transformations.
                    427: *
                    428: *        Step (1R): apply back the new right singular vector matrix
                    429: *        to B.
                    430: *
                    431:          IF( K.EQ.1 ) THEN
                    432:             CALL DCOPY( NRHS, B, LDB, BX, LDBX )
                    433:          ELSE
                    434:             DO 80 J = 1, K
                    435:                DSIGJ = POLES( J, 2 )
                    436:                IF( Z( J ).EQ.ZERO ) THEN
                    437:                   WORK( J ) = ZERO
                    438:                ELSE
                    439:                   WORK( J ) = -Z( J ) / DIFL( J ) /
                    440:      $                        ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
                    441:                END IF
                    442:                DO 60 I = 1, J - 1
                    443:                   IF( Z( J ).EQ.ZERO ) THEN
                    444:                      WORK( I ) = ZERO
                    445:                   ELSE
                    446:                      WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I+1,
                    447:      $                           2 ) )-DIFR( I, 1 ) ) /
                    448:      $                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
                    449:                   END IF
                    450:    60          CONTINUE
                    451:                DO 70 I = J + 1, K
                    452:                   IF( Z( J ).EQ.ZERO ) THEN
                    453:                      WORK( I ) = ZERO
                    454:                   ELSE
                    455:                      WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I,
                    456:      $                           2 ) )-DIFL( I ) ) /
                    457:      $                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
                    458:                   END IF
                    459:    70          CONTINUE
                    460:                CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
                    461:      $                     BX( J, 1 ), LDBX )
                    462:    80       CONTINUE
                    463:          END IF
                    464: *
                    465: *        Step (2R): if SQRE = 1, apply back the rotation that is
                    466: *        related to the right null space of the subproblem.
                    467: *
                    468:          IF( SQRE.EQ.1 ) THEN
                    469:             CALL DCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
                    470:             CALL DROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )
                    471:          END IF
                    472:          IF( K.LT.MAX( M, N ) )
                    473:      $      CALL DLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB, BX( K+1, 1 ),
                    474:      $                   LDBX )
                    475: *
                    476: *        Step (3R): permute rows of B.
                    477: *
                    478:          CALL DCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )
                    479:          IF( SQRE.EQ.1 ) THEN
                    480:             CALL DCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
                    481:          END IF
                    482:          DO 90 I = 2, N
                    483:             CALL DCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
                    484:    90    CONTINUE
                    485: *
                    486: *        Step (4R): apply back the Givens rotations performed.
                    487: *
                    488:          DO 100 I = GIVPTR, 1, -1
                    489:             CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
                    490:      $                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
                    491:      $                 -GIVNUM( I, 1 ) )
                    492:   100    CONTINUE
                    493:       END IF
                    494: *
                    495:       RETURN
                    496: *
                    497: *     End of DLALS0
                    498: *
                    499:       END

CVSweb interface <joel.bertrand@systella.fr>