Annotation of rpl/lapack/lapack/dlahrd.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DLAHRD
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAHRD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahrd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahrd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahrd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER            K, LDA, LDT, LDY, N, NB
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       DOUBLE PRECISION   A( LDA, * ), T( LDT, NB ), TAU( NB ),
        !            28: *      $                   Y( LDY, NB )
        !            29: *       ..
        !            30: *  
        !            31: *
        !            32: *> \par Purpose:
        !            33: *  =============
        !            34: *>
        !            35: *> \verbatim
        !            36: *>
        !            37: *> DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
        !            38: *> matrix A so that elements below the k-th subdiagonal are zero. The
        !            39: *> reduction is performed by an orthogonal similarity transformation
        !            40: *> Q**T * A * Q. The routine returns the matrices V and T which determine
        !            41: *> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
        !            42: *>
        !            43: *> This is an OBSOLETE auxiliary routine. 
        !            44: *> This routine will be 'deprecated' in a  future release.
        !            45: *> Please use the new routine DLAHR2 instead.
        !            46: *> \endverbatim
        !            47: *
        !            48: *  Arguments:
        !            49: *  ==========
        !            50: *
        !            51: *> \param[in] N
        !            52: *> \verbatim
        !            53: *>          N is INTEGER
        !            54: *>          The order of the matrix A.
        !            55: *> \endverbatim
        !            56: *>
        !            57: *> \param[in] K
        !            58: *> \verbatim
        !            59: *>          K is INTEGER
        !            60: *>          The offset for the reduction. Elements below the k-th
        !            61: *>          subdiagonal in the first NB columns are reduced to zero.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] NB
        !            65: *> \verbatim
        !            66: *>          NB is INTEGER
        !            67: *>          The number of columns to be reduced.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in,out] A
        !            71: *> \verbatim
        !            72: *>          A is DOUBLE PRECISION array, dimension (LDA,N-K+1)
        !            73: *>          On entry, the n-by-(n-k+1) general matrix A.
        !            74: *>          On exit, the elements on and above the k-th subdiagonal in
        !            75: *>          the first NB columns are overwritten with the corresponding
        !            76: *>          elements of the reduced matrix; the elements below the k-th
        !            77: *>          subdiagonal, with the array TAU, represent the matrix Q as a
        !            78: *>          product of elementary reflectors. The other columns of A are
        !            79: *>          unchanged. See Further Details.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] LDA
        !            83: *> \verbatim
        !            84: *>          LDA is INTEGER
        !            85: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[out] TAU
        !            89: *> \verbatim
        !            90: *>          TAU is DOUBLE PRECISION array, dimension (NB)
        !            91: *>          The scalar factors of the elementary reflectors. See Further
        !            92: *>          Details.
        !            93: *> \endverbatim
        !            94: *>
        !            95: *> \param[out] T
        !            96: *> \verbatim
        !            97: *>          T is DOUBLE PRECISION array, dimension (LDT,NB)
        !            98: *>          The upper triangular matrix T.
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[in] LDT
        !           102: *> \verbatim
        !           103: *>          LDT is INTEGER
        !           104: *>          The leading dimension of the array T.  LDT >= NB.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[out] Y
        !           108: *> \verbatim
        !           109: *>          Y is DOUBLE PRECISION array, dimension (LDY,NB)
        !           110: *>          The n-by-nb matrix Y.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in] LDY
        !           114: *> \verbatim
        !           115: *>          LDY is INTEGER
        !           116: *>          The leading dimension of the array Y. LDY >= N.
        !           117: *> \endverbatim
        !           118: *
        !           119: *  Authors:
        !           120: *  ========
        !           121: *
        !           122: *> \author Univ. of Tennessee 
        !           123: *> \author Univ. of California Berkeley 
        !           124: *> \author Univ. of Colorado Denver 
        !           125: *> \author NAG Ltd. 
        !           126: *
        !           127: *> \date November 2011
        !           128: *
        !           129: *> \ingroup doubleOTHERauxiliary
        !           130: *
        !           131: *> \par Further Details:
        !           132: *  =====================
        !           133: *>
        !           134: *> \verbatim
        !           135: *>
        !           136: *>  The matrix Q is represented as a product of nb elementary reflectors
        !           137: *>
        !           138: *>     Q = H(1) H(2) . . . H(nb).
        !           139: *>
        !           140: *>  Each H(i) has the form
        !           141: *>
        !           142: *>     H(i) = I - tau * v * v**T
        !           143: *>
        !           144: *>  where tau is a real scalar, and v is a real vector with
        !           145: *>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
        !           146: *>  A(i+k+1:n,i), and tau in TAU(i).
        !           147: *>
        !           148: *>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
        !           149: *>  V which is needed, with T and Y, to apply the transformation to the
        !           150: *>  unreduced part of the matrix, using an update of the form:
        !           151: *>  A := (I - V*T*V**T) * (A - Y*V**T).
        !           152: *>
        !           153: *>  The contents of A on exit are illustrated by the following example
        !           154: *>  with n = 7, k = 3 and nb = 2:
        !           155: *>
        !           156: *>     ( a   h   a   a   a )
        !           157: *>     ( a   h   a   a   a )
        !           158: *>     ( a   h   a   a   a )
        !           159: *>     ( h   h   a   a   a )
        !           160: *>     ( v1  h   a   a   a )
        !           161: *>     ( v1  v2  a   a   a )
        !           162: *>     ( v1  v2  a   a   a )
        !           163: *>
        !           164: *>  where a denotes an element of the original matrix A, h denotes a
        !           165: *>  modified element of the upper Hessenberg matrix H, and vi denotes an
        !           166: *>  element of the vector defining H(i).
        !           167: *> \endverbatim
        !           168: *>
        !           169: *  =====================================================================
1.1       bertrand  170:       SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
                    171: *
1.9     ! bertrand  172: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  173: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    174: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  175: *     November 2011
1.1       bertrand  176: *
                    177: *     .. Scalar Arguments ..
                    178:       INTEGER            K, LDA, LDT, LDY, N, NB
                    179: *     ..
                    180: *     .. Array Arguments ..
                    181:       DOUBLE PRECISION   A( LDA, * ), T( LDT, NB ), TAU( NB ),
                    182:      $                   Y( LDY, NB )
                    183: *     ..
                    184: *
                    185: *  =====================================================================
                    186: *
                    187: *     .. Parameters ..
                    188:       DOUBLE PRECISION   ZERO, ONE
                    189:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    190: *     ..
                    191: *     .. Local Scalars ..
                    192:       INTEGER            I
                    193:       DOUBLE PRECISION   EI
                    194: *     ..
                    195: *     .. External Subroutines ..
                    196:       EXTERNAL           DAXPY, DCOPY, DGEMV, DLARFG, DSCAL, DTRMV
                    197: *     ..
                    198: *     .. Intrinsic Functions ..
                    199:       INTRINSIC          MIN
                    200: *     ..
                    201: *     .. Executable Statements ..
                    202: *
                    203: *     Quick return if possible
                    204: *
                    205:       IF( N.LE.1 )
                    206:      $   RETURN
                    207: *
                    208:       DO 10 I = 1, NB
                    209:          IF( I.GT.1 ) THEN
                    210: *
                    211: *           Update A(1:n,i)
                    212: *
1.8       bertrand  213: *           Compute i-th column of A - Y * V**T
1.1       bertrand  214: *
                    215:             CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
                    216:      $                  A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
                    217: *
1.8       bertrand  218: *           Apply I - V * T**T * V**T to this column (call it b) from the
1.1       bertrand  219: *           left, using the last column of T as workspace
                    220: *
                    221: *           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
                    222: *                    ( V2 )             ( b2 )
                    223: *
                    224: *           where V1 is unit lower triangular
                    225: *
1.8       bertrand  226: *           w := V1**T * b1
1.1       bertrand  227: *
                    228:             CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
                    229:             CALL DTRMV( 'Lower', 'Transpose', 'Unit', I-1, A( K+1, 1 ),
                    230:      $                  LDA, T( 1, NB ), 1 )
                    231: *
1.8       bertrand  232: *           w := w + V2**T *b2
1.1       bertrand  233: *
                    234:             CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ),
                    235:      $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
                    236: *
1.8       bertrand  237: *           w := T**T *w
1.1       bertrand  238: *
                    239:             CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', I-1, T, LDT,
                    240:      $                  T( 1, NB ), 1 )
                    241: *
                    242: *           b2 := b2 - V2*w
                    243: *
                    244:             CALL DGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
                    245:      $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
                    246: *
                    247: *           b1 := b1 - V1*w
                    248: *
                    249:             CALL DTRMV( 'Lower', 'No transpose', 'Unit', I-1,
                    250:      $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
                    251:             CALL DAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
                    252: *
                    253:             A( K+I-1, I-1 ) = EI
                    254:          END IF
                    255: *
                    256: *        Generate the elementary reflector H(i) to annihilate
                    257: *        A(k+i+1:n,i)
                    258: *
                    259:          CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
                    260:      $                TAU( I ) )
                    261:          EI = A( K+I, I )
                    262:          A( K+I, I ) = ONE
                    263: *
                    264: *        Compute  Y(1:n,i)
                    265: *
                    266:          CALL DGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
                    267:      $               A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
                    268:          CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ), LDA,
                    269:      $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
                    270:          CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
                    271:      $               ONE, Y( 1, I ), 1 )
                    272:          CALL DSCAL( N, TAU( I ), Y( 1, I ), 1 )
                    273: *
                    274: *        Compute T(1:i,i)
                    275: *
                    276:          CALL DSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
                    277:          CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
                    278:      $               T( 1, I ), 1 )
                    279:          T( I, I ) = TAU( I )
                    280: *
                    281:    10 CONTINUE
                    282:       A( K+NB, NB ) = EI
                    283: *
                    284:       RETURN
                    285: *
                    286: *     End of DLAHRD
                    287: *
                    288:       END

CVSweb interface <joel.bertrand@systella.fr>