Annotation of rpl/lapack/lapack/dlahrd.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
                      2: *
                      3: *  -- LAPACK auxiliary routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            K, LDA, LDT, LDY, N, NB
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       DOUBLE PRECISION   A( LDA, * ), T( LDT, NB ), TAU( NB ),
                     13:      $                   Y( LDY, NB )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
                     20: *  matrix A so that elements below the k-th subdiagonal are zero. The
                     21: *  reduction is performed by an orthogonal similarity transformation
                     22: *  Q' * A * Q. The routine returns the matrices V and T which determine
                     23: *  Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
                     24: *
                     25: *  This is an OBSOLETE auxiliary routine. 
                     26: *  This routine will be 'deprecated' in a  future release.
                     27: *  Please use the new routine DLAHR2 instead.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  N       (input) INTEGER
                     33: *          The order of the matrix A.
                     34: *
                     35: *  K       (input) INTEGER
                     36: *          The offset for the reduction. Elements below the k-th
                     37: *          subdiagonal in the first NB columns are reduced to zero.
                     38: *
                     39: *  NB      (input) INTEGER
                     40: *          The number of columns to be reduced.
                     41: *
                     42: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
                     43: *          On entry, the n-by-(n-k+1) general matrix A.
                     44: *          On exit, the elements on and above the k-th subdiagonal in
                     45: *          the first NB columns are overwritten with the corresponding
                     46: *          elements of the reduced matrix; the elements below the k-th
                     47: *          subdiagonal, with the array TAU, represent the matrix Q as a
                     48: *          product of elementary reflectors. The other columns of A are
                     49: *          unchanged. See Further Details.
                     50: *
                     51: *  LDA     (input) INTEGER
                     52: *          The leading dimension of the array A.  LDA >= max(1,N).
                     53: *
                     54: *  TAU     (output) DOUBLE PRECISION array, dimension (NB)
                     55: *          The scalar factors of the elementary reflectors. See Further
                     56: *          Details.
                     57: *
                     58: *  T       (output) DOUBLE PRECISION array, dimension (LDT,NB)
                     59: *          The upper triangular matrix T.
                     60: *
                     61: *  LDT     (input) INTEGER
                     62: *          The leading dimension of the array T.  LDT >= NB.
                     63: *
                     64: *  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
                     65: *          The n-by-nb matrix Y.
                     66: *
                     67: *  LDY     (input) INTEGER
                     68: *          The leading dimension of the array Y. LDY >= N.
                     69: *
                     70: *  Further Details
                     71: *  ===============
                     72: *
                     73: *  The matrix Q is represented as a product of nb elementary reflectors
                     74: *
                     75: *     Q = H(1) H(2) . . . H(nb).
                     76: *
                     77: *  Each H(i) has the form
                     78: *
                     79: *     H(i) = I - tau * v * v'
                     80: *
                     81: *  where tau is a real scalar, and v is a real vector with
                     82: *  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
                     83: *  A(i+k+1:n,i), and tau in TAU(i).
                     84: *
                     85: *  The elements of the vectors v together form the (n-k+1)-by-nb matrix
                     86: *  V which is needed, with T and Y, to apply the transformation to the
                     87: *  unreduced part of the matrix, using an update of the form:
                     88: *  A := (I - V*T*V') * (A - Y*V').
                     89: *
                     90: *  The contents of A on exit are illustrated by the following example
                     91: *  with n = 7, k = 3 and nb = 2:
                     92: *
                     93: *     ( a   h   a   a   a )
                     94: *     ( a   h   a   a   a )
                     95: *     ( a   h   a   a   a )
                     96: *     ( h   h   a   a   a )
                     97: *     ( v1  h   a   a   a )
                     98: *     ( v1  v2  a   a   a )
                     99: *     ( v1  v2  a   a   a )
                    100: *
                    101: *  where a denotes an element of the original matrix A, h denotes a
                    102: *  modified element of the upper Hessenberg matrix H, and vi denotes an
                    103: *  element of the vector defining H(i).
                    104: *
                    105: *  =====================================================================
                    106: *
                    107: *     .. Parameters ..
                    108:       DOUBLE PRECISION   ZERO, ONE
                    109:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    110: *     ..
                    111: *     .. Local Scalars ..
                    112:       INTEGER            I
                    113:       DOUBLE PRECISION   EI
                    114: *     ..
                    115: *     .. External Subroutines ..
                    116:       EXTERNAL           DAXPY, DCOPY, DGEMV, DLARFG, DSCAL, DTRMV
                    117: *     ..
                    118: *     .. Intrinsic Functions ..
                    119:       INTRINSIC          MIN
                    120: *     ..
                    121: *     .. Executable Statements ..
                    122: *
                    123: *     Quick return if possible
                    124: *
                    125:       IF( N.LE.1 )
                    126:      $   RETURN
                    127: *
                    128:       DO 10 I = 1, NB
                    129:          IF( I.GT.1 ) THEN
                    130: *
                    131: *           Update A(1:n,i)
                    132: *
                    133: *           Compute i-th column of A - Y * V'
                    134: *
                    135:             CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
                    136:      $                  A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
                    137: *
                    138: *           Apply I - V * T' * V' to this column (call it b) from the
                    139: *           left, using the last column of T as workspace
                    140: *
                    141: *           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
                    142: *                    ( V2 )             ( b2 )
                    143: *
                    144: *           where V1 is unit lower triangular
                    145: *
                    146: *           w := V1' * b1
                    147: *
                    148:             CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
                    149:             CALL DTRMV( 'Lower', 'Transpose', 'Unit', I-1, A( K+1, 1 ),
                    150:      $                  LDA, T( 1, NB ), 1 )
                    151: *
                    152: *           w := w + V2'*b2
                    153: *
                    154:             CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ),
                    155:      $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
                    156: *
                    157: *           w := T'*w
                    158: *
                    159:             CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', I-1, T, LDT,
                    160:      $                  T( 1, NB ), 1 )
                    161: *
                    162: *           b2 := b2 - V2*w
                    163: *
                    164:             CALL DGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
                    165:      $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
                    166: *
                    167: *           b1 := b1 - V1*w
                    168: *
                    169:             CALL DTRMV( 'Lower', 'No transpose', 'Unit', I-1,
                    170:      $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
                    171:             CALL DAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
                    172: *
                    173:             A( K+I-1, I-1 ) = EI
                    174:          END IF
                    175: *
                    176: *        Generate the elementary reflector H(i) to annihilate
                    177: *        A(k+i+1:n,i)
                    178: *
                    179:          CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
                    180:      $                TAU( I ) )
                    181:          EI = A( K+I, I )
                    182:          A( K+I, I ) = ONE
                    183: *
                    184: *        Compute  Y(1:n,i)
                    185: *
                    186:          CALL DGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
                    187:      $               A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
                    188:          CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ), LDA,
                    189:      $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
                    190:          CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
                    191:      $               ONE, Y( 1, I ), 1 )
                    192:          CALL DSCAL( N, TAU( I ), Y( 1, I ), 1 )
                    193: *
                    194: *        Compute T(1:i,i)
                    195: *
                    196:          CALL DSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
                    197:          CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
                    198:      $               T( 1, I ), 1 )
                    199:          T( I, I ) = TAU( I )
                    200: *
                    201:    10 CONTINUE
                    202:       A( K+NB, NB ) = EI
                    203: *
                    204:       RETURN
                    205: *
                    206: *     End of DLAHRD
                    207: *
                    208:       END

CVSweb interface <joel.bertrand@systella.fr>