Annotation of rpl/lapack/lapack/dlahrd.f, revision 1.12
1.12 ! bertrand 1: *> \brief \b DLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
1.9 bertrand 2: *
3: * =========== DOCUMENTATION ===========
4: *
5: * Online html documentation available at
6: * http://www.netlib.org/lapack/explore-html/
7: *
8: *> \htmlonly
9: *> Download DLAHRD + dependencies
10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahrd.f">
11: *> [TGZ]</a>
12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahrd.f">
13: *> [ZIP]</a>
14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahrd.f">
15: *> [TXT]</a>
16: *> \endhtmlonly
17: *
18: * Definition:
19: * ===========
20: *
21: * SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
22: *
23: * .. Scalar Arguments ..
24: * INTEGER K, LDA, LDT, LDY, N, NB
25: * ..
26: * .. Array Arguments ..
27: * DOUBLE PRECISION A( LDA, * ), T( LDT, NB ), TAU( NB ),
28: * $ Y( LDY, NB )
29: * ..
30: *
31: *
32: *> \par Purpose:
33: * =============
34: *>
35: *> \verbatim
36: *>
37: *> DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
38: *> matrix A so that elements below the k-th subdiagonal are zero. The
39: *> reduction is performed by an orthogonal similarity transformation
40: *> Q**T * A * Q. The routine returns the matrices V and T which determine
41: *> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
42: *>
43: *> This is an OBSOLETE auxiliary routine.
44: *> This routine will be 'deprecated' in a future release.
45: *> Please use the new routine DLAHR2 instead.
46: *> \endverbatim
47: *
48: * Arguments:
49: * ==========
50: *
51: *> \param[in] N
52: *> \verbatim
53: *> N is INTEGER
54: *> The order of the matrix A.
55: *> \endverbatim
56: *>
57: *> \param[in] K
58: *> \verbatim
59: *> K is INTEGER
60: *> The offset for the reduction. Elements below the k-th
61: *> subdiagonal in the first NB columns are reduced to zero.
62: *> \endverbatim
63: *>
64: *> \param[in] NB
65: *> \verbatim
66: *> NB is INTEGER
67: *> The number of columns to be reduced.
68: *> \endverbatim
69: *>
70: *> \param[in,out] A
71: *> \verbatim
72: *> A is DOUBLE PRECISION array, dimension (LDA,N-K+1)
73: *> On entry, the n-by-(n-k+1) general matrix A.
74: *> On exit, the elements on and above the k-th subdiagonal in
75: *> the first NB columns are overwritten with the corresponding
76: *> elements of the reduced matrix; the elements below the k-th
77: *> subdiagonal, with the array TAU, represent the matrix Q as a
78: *> product of elementary reflectors. The other columns of A are
79: *> unchanged. See Further Details.
80: *> \endverbatim
81: *>
82: *> \param[in] LDA
83: *> \verbatim
84: *> LDA is INTEGER
85: *> The leading dimension of the array A. LDA >= max(1,N).
86: *> \endverbatim
87: *>
88: *> \param[out] TAU
89: *> \verbatim
90: *> TAU is DOUBLE PRECISION array, dimension (NB)
91: *> The scalar factors of the elementary reflectors. See Further
92: *> Details.
93: *> \endverbatim
94: *>
95: *> \param[out] T
96: *> \verbatim
97: *> T is DOUBLE PRECISION array, dimension (LDT,NB)
98: *> The upper triangular matrix T.
99: *> \endverbatim
100: *>
101: *> \param[in] LDT
102: *> \verbatim
103: *> LDT is INTEGER
104: *> The leading dimension of the array T. LDT >= NB.
105: *> \endverbatim
106: *>
107: *> \param[out] Y
108: *> \verbatim
109: *> Y is DOUBLE PRECISION array, dimension (LDY,NB)
110: *> The n-by-nb matrix Y.
111: *> \endverbatim
112: *>
113: *> \param[in] LDY
114: *> \verbatim
115: *> LDY is INTEGER
116: *> The leading dimension of the array Y. LDY >= N.
117: *> \endverbatim
118: *
119: * Authors:
120: * ========
121: *
122: *> \author Univ. of Tennessee
123: *> \author Univ. of California Berkeley
124: *> \author Univ. of Colorado Denver
125: *> \author NAG Ltd.
126: *
1.12 ! bertrand 127: *> \date September 2012
1.9 bertrand 128: *
129: *> \ingroup doubleOTHERauxiliary
130: *
131: *> \par Further Details:
132: * =====================
133: *>
134: *> \verbatim
135: *>
136: *> The matrix Q is represented as a product of nb elementary reflectors
137: *>
138: *> Q = H(1) H(2) . . . H(nb).
139: *>
140: *> Each H(i) has the form
141: *>
142: *> H(i) = I - tau * v * v**T
143: *>
144: *> where tau is a real scalar, and v is a real vector with
145: *> v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
146: *> A(i+k+1:n,i), and tau in TAU(i).
147: *>
148: *> The elements of the vectors v together form the (n-k+1)-by-nb matrix
149: *> V which is needed, with T and Y, to apply the transformation to the
150: *> unreduced part of the matrix, using an update of the form:
151: *> A := (I - V*T*V**T) * (A - Y*V**T).
152: *>
153: *> The contents of A on exit are illustrated by the following example
154: *> with n = 7, k = 3 and nb = 2:
155: *>
156: *> ( a h a a a )
157: *> ( a h a a a )
158: *> ( a h a a a )
159: *> ( h h a a a )
160: *> ( v1 h a a a )
161: *> ( v1 v2 a a a )
162: *> ( v1 v2 a a a )
163: *>
164: *> where a denotes an element of the original matrix A, h denotes a
165: *> modified element of the upper Hessenberg matrix H, and vi denotes an
166: *> element of the vector defining H(i).
167: *> \endverbatim
168: *>
169: * =====================================================================
1.1 bertrand 170: SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
171: *
1.12 ! bertrand 172: * -- LAPACK auxiliary routine (version 3.4.2) --
1.1 bertrand 173: * -- LAPACK is a software package provided by Univ. of Tennessee, --
174: * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12 ! bertrand 175: * September 2012
1.1 bertrand 176: *
177: * .. Scalar Arguments ..
178: INTEGER K, LDA, LDT, LDY, N, NB
179: * ..
180: * .. Array Arguments ..
181: DOUBLE PRECISION A( LDA, * ), T( LDT, NB ), TAU( NB ),
182: $ Y( LDY, NB )
183: * ..
184: *
185: * =====================================================================
186: *
187: * .. Parameters ..
188: DOUBLE PRECISION ZERO, ONE
189: PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
190: * ..
191: * .. Local Scalars ..
192: INTEGER I
193: DOUBLE PRECISION EI
194: * ..
195: * .. External Subroutines ..
196: EXTERNAL DAXPY, DCOPY, DGEMV, DLARFG, DSCAL, DTRMV
197: * ..
198: * .. Intrinsic Functions ..
199: INTRINSIC MIN
200: * ..
201: * .. Executable Statements ..
202: *
203: * Quick return if possible
204: *
205: IF( N.LE.1 )
206: $ RETURN
207: *
208: DO 10 I = 1, NB
209: IF( I.GT.1 ) THEN
210: *
211: * Update A(1:n,i)
212: *
1.8 bertrand 213: * Compute i-th column of A - Y * V**T
1.1 bertrand 214: *
215: CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
216: $ A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
217: *
1.8 bertrand 218: * Apply I - V * T**T * V**T to this column (call it b) from the
1.1 bertrand 219: * left, using the last column of T as workspace
220: *
221: * Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
222: * ( V2 ) ( b2 )
223: *
224: * where V1 is unit lower triangular
225: *
1.8 bertrand 226: * w := V1**T * b1
1.1 bertrand 227: *
228: CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
229: CALL DTRMV( 'Lower', 'Transpose', 'Unit', I-1, A( K+1, 1 ),
230: $ LDA, T( 1, NB ), 1 )
231: *
1.8 bertrand 232: * w := w + V2**T *b2
1.1 bertrand 233: *
234: CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ),
235: $ LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
236: *
1.8 bertrand 237: * w := T**T *w
1.1 bertrand 238: *
239: CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', I-1, T, LDT,
240: $ T( 1, NB ), 1 )
241: *
242: * b2 := b2 - V2*w
243: *
244: CALL DGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
245: $ LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
246: *
247: * b1 := b1 - V1*w
248: *
249: CALL DTRMV( 'Lower', 'No transpose', 'Unit', I-1,
250: $ A( K+1, 1 ), LDA, T( 1, NB ), 1 )
251: CALL DAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
252: *
253: A( K+I-1, I-1 ) = EI
254: END IF
255: *
256: * Generate the elementary reflector H(i) to annihilate
257: * A(k+i+1:n,i)
258: *
259: CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
260: $ TAU( I ) )
261: EI = A( K+I, I )
262: A( K+I, I ) = ONE
263: *
264: * Compute Y(1:n,i)
265: *
266: CALL DGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
267: $ A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
268: CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ), LDA,
269: $ A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
270: CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
271: $ ONE, Y( 1, I ), 1 )
272: CALL DSCAL( N, TAU( I ), Y( 1, I ), 1 )
273: *
274: * Compute T(1:i,i)
275: *
276: CALL DSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
277: CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
278: $ T( 1, I ), 1 )
279: T( I, I ) = TAU( I )
280: *
281: 10 CONTINUE
282: A( K+NB, NB ) = EI
283: *
284: RETURN
285: *
286: * End of DLAHRD
287: *
288: END
CVSweb interface <joel.bertrand@systella.fr>