Annotation of rpl/lapack/lapack/dlahrd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
        !             2: *
        !             3: *  -- LAPACK auxiliary routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            K, LDA, LDT, LDY, N, NB
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       DOUBLE PRECISION   A( LDA, * ), T( LDT, NB ), TAU( NB ),
        !            13:      $                   Y( LDY, NB )
        !            14: *     ..
        !            15: *
        !            16: *  Purpose
        !            17: *  =======
        !            18: *
        !            19: *  DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
        !            20: *  matrix A so that elements below the k-th subdiagonal are zero. The
        !            21: *  reduction is performed by an orthogonal similarity transformation
        !            22: *  Q' * A * Q. The routine returns the matrices V and T which determine
        !            23: *  Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
        !            24: *
        !            25: *  This is an OBSOLETE auxiliary routine. 
        !            26: *  This routine will be 'deprecated' in a  future release.
        !            27: *  Please use the new routine DLAHR2 instead.
        !            28: *
        !            29: *  Arguments
        !            30: *  =========
        !            31: *
        !            32: *  N       (input) INTEGER
        !            33: *          The order of the matrix A.
        !            34: *
        !            35: *  K       (input) INTEGER
        !            36: *          The offset for the reduction. Elements below the k-th
        !            37: *          subdiagonal in the first NB columns are reduced to zero.
        !            38: *
        !            39: *  NB      (input) INTEGER
        !            40: *          The number of columns to be reduced.
        !            41: *
        !            42: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
        !            43: *          On entry, the n-by-(n-k+1) general matrix A.
        !            44: *          On exit, the elements on and above the k-th subdiagonal in
        !            45: *          the first NB columns are overwritten with the corresponding
        !            46: *          elements of the reduced matrix; the elements below the k-th
        !            47: *          subdiagonal, with the array TAU, represent the matrix Q as a
        !            48: *          product of elementary reflectors. The other columns of A are
        !            49: *          unchanged. See Further Details.
        !            50: *
        !            51: *  LDA     (input) INTEGER
        !            52: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            53: *
        !            54: *  TAU     (output) DOUBLE PRECISION array, dimension (NB)
        !            55: *          The scalar factors of the elementary reflectors. See Further
        !            56: *          Details.
        !            57: *
        !            58: *  T       (output) DOUBLE PRECISION array, dimension (LDT,NB)
        !            59: *          The upper triangular matrix T.
        !            60: *
        !            61: *  LDT     (input) INTEGER
        !            62: *          The leading dimension of the array T.  LDT >= NB.
        !            63: *
        !            64: *  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
        !            65: *          The n-by-nb matrix Y.
        !            66: *
        !            67: *  LDY     (input) INTEGER
        !            68: *          The leading dimension of the array Y. LDY >= N.
        !            69: *
        !            70: *  Further Details
        !            71: *  ===============
        !            72: *
        !            73: *  The matrix Q is represented as a product of nb elementary reflectors
        !            74: *
        !            75: *     Q = H(1) H(2) . . . H(nb).
        !            76: *
        !            77: *  Each H(i) has the form
        !            78: *
        !            79: *     H(i) = I - tau * v * v'
        !            80: *
        !            81: *  where tau is a real scalar, and v is a real vector with
        !            82: *  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
        !            83: *  A(i+k+1:n,i), and tau in TAU(i).
        !            84: *
        !            85: *  The elements of the vectors v together form the (n-k+1)-by-nb matrix
        !            86: *  V which is needed, with T and Y, to apply the transformation to the
        !            87: *  unreduced part of the matrix, using an update of the form:
        !            88: *  A := (I - V*T*V') * (A - Y*V').
        !            89: *
        !            90: *  The contents of A on exit are illustrated by the following example
        !            91: *  with n = 7, k = 3 and nb = 2:
        !            92: *
        !            93: *     ( a   h   a   a   a )
        !            94: *     ( a   h   a   a   a )
        !            95: *     ( a   h   a   a   a )
        !            96: *     ( h   h   a   a   a )
        !            97: *     ( v1  h   a   a   a )
        !            98: *     ( v1  v2  a   a   a )
        !            99: *     ( v1  v2  a   a   a )
        !           100: *
        !           101: *  where a denotes an element of the original matrix A, h denotes a
        !           102: *  modified element of the upper Hessenberg matrix H, and vi denotes an
        !           103: *  element of the vector defining H(i).
        !           104: *
        !           105: *  =====================================================================
        !           106: *
        !           107: *     .. Parameters ..
        !           108:       DOUBLE PRECISION   ZERO, ONE
        !           109:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           110: *     ..
        !           111: *     .. Local Scalars ..
        !           112:       INTEGER            I
        !           113:       DOUBLE PRECISION   EI
        !           114: *     ..
        !           115: *     .. External Subroutines ..
        !           116:       EXTERNAL           DAXPY, DCOPY, DGEMV, DLARFG, DSCAL, DTRMV
        !           117: *     ..
        !           118: *     .. Intrinsic Functions ..
        !           119:       INTRINSIC          MIN
        !           120: *     ..
        !           121: *     .. Executable Statements ..
        !           122: *
        !           123: *     Quick return if possible
        !           124: *
        !           125:       IF( N.LE.1 )
        !           126:      $   RETURN
        !           127: *
        !           128:       DO 10 I = 1, NB
        !           129:          IF( I.GT.1 ) THEN
        !           130: *
        !           131: *           Update A(1:n,i)
        !           132: *
        !           133: *           Compute i-th column of A - Y * V'
        !           134: *
        !           135:             CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
        !           136:      $                  A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
        !           137: *
        !           138: *           Apply I - V * T' * V' to this column (call it b) from the
        !           139: *           left, using the last column of T as workspace
        !           140: *
        !           141: *           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
        !           142: *                    ( V2 )             ( b2 )
        !           143: *
        !           144: *           where V1 is unit lower triangular
        !           145: *
        !           146: *           w := V1' * b1
        !           147: *
        !           148:             CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
        !           149:             CALL DTRMV( 'Lower', 'Transpose', 'Unit', I-1, A( K+1, 1 ),
        !           150:      $                  LDA, T( 1, NB ), 1 )
        !           151: *
        !           152: *           w := w + V2'*b2
        !           153: *
        !           154:             CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ),
        !           155:      $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
        !           156: *
        !           157: *           w := T'*w
        !           158: *
        !           159:             CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', I-1, T, LDT,
        !           160:      $                  T( 1, NB ), 1 )
        !           161: *
        !           162: *           b2 := b2 - V2*w
        !           163: *
        !           164:             CALL DGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
        !           165:      $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
        !           166: *
        !           167: *           b1 := b1 - V1*w
        !           168: *
        !           169:             CALL DTRMV( 'Lower', 'No transpose', 'Unit', I-1,
        !           170:      $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
        !           171:             CALL DAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
        !           172: *
        !           173:             A( K+I-1, I-1 ) = EI
        !           174:          END IF
        !           175: *
        !           176: *        Generate the elementary reflector H(i) to annihilate
        !           177: *        A(k+i+1:n,i)
        !           178: *
        !           179:          CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
        !           180:      $                TAU( I ) )
        !           181:          EI = A( K+I, I )
        !           182:          A( K+I, I ) = ONE
        !           183: *
        !           184: *        Compute  Y(1:n,i)
        !           185: *
        !           186:          CALL DGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
        !           187:      $               A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
        !           188:          CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ), LDA,
        !           189:      $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
        !           190:          CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
        !           191:      $               ONE, Y( 1, I ), 1 )
        !           192:          CALL DSCAL( N, TAU( I ), Y( 1, I ), 1 )
        !           193: *
        !           194: *        Compute T(1:i,i)
        !           195: *
        !           196:          CALL DSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
        !           197:          CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
        !           198:      $               T( 1, I ), 1 )
        !           199:          T( I, I ) = TAU( I )
        !           200: *
        !           201:    10 CONTINUE
        !           202:       A( K+NB, NB ) = EI
        !           203: *
        !           204:       RETURN
        !           205: *
        !           206: *     End of DLAHRD
        !           207: *
        !           208:       END

CVSweb interface <joel.bertrand@systella.fr>