Annotation of rpl/lapack/lapack/dlahr2.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DLAHR2
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAHR2 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahr2.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahr2.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahr2.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER            K, LDA, LDT, LDY, N, NB
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       DOUBLE PRECISION  A( LDA, * ), T( LDT, NB ), TAU( NB ),
        !            28: *      $                   Y( LDY, NB )
        !            29: *       ..
        !            30: *  
        !            31: *
        !            32: *> \par Purpose:
        !            33: *  =============
        !            34: *>
        !            35: *> \verbatim
        !            36: *>
        !            37: *> DLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1)
        !            38: *> matrix A so that elements below the k-th subdiagonal are zero. The
        !            39: *> reduction is performed by an orthogonal similarity transformation
        !            40: *> Q**T * A * Q. The routine returns the matrices V and T which determine
        !            41: *> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
        !            42: *>
        !            43: *> This is an auxiliary routine called by DGEHRD.
        !            44: *> \endverbatim
        !            45: *
        !            46: *  Arguments:
        !            47: *  ==========
        !            48: *
        !            49: *> \param[in] N
        !            50: *> \verbatim
        !            51: *>          N is INTEGER
        !            52: *>          The order of the matrix A.
        !            53: *> \endverbatim
        !            54: *>
        !            55: *> \param[in] K
        !            56: *> \verbatim
        !            57: *>          K is INTEGER
        !            58: *>          The offset for the reduction. Elements below the k-th
        !            59: *>          subdiagonal in the first NB columns are reduced to zero.
        !            60: *>          K < N.
        !            61: *> \endverbatim
        !            62: *>
        !            63: *> \param[in] NB
        !            64: *> \verbatim
        !            65: *>          NB is INTEGER
        !            66: *>          The number of columns to be reduced.
        !            67: *> \endverbatim
        !            68: *>
        !            69: *> \param[in,out] A
        !            70: *> \verbatim
        !            71: *>          A is DOUBLE PRECISION array, dimension (LDA,N-K+1)
        !            72: *>          On entry, the n-by-(n-k+1) general matrix A.
        !            73: *>          On exit, the elements on and above the k-th subdiagonal in
        !            74: *>          the first NB columns are overwritten with the corresponding
        !            75: *>          elements of the reduced matrix; the elements below the k-th
        !            76: *>          subdiagonal, with the array TAU, represent the matrix Q as a
        !            77: *>          product of elementary reflectors. The other columns of A are
        !            78: *>          unchanged. See Further Details.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] LDA
        !            82: *> \verbatim
        !            83: *>          LDA is INTEGER
        !            84: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[out] TAU
        !            88: *> \verbatim
        !            89: *>          TAU is DOUBLE PRECISION array, dimension (NB)
        !            90: *>          The scalar factors of the elementary reflectors. See Further
        !            91: *>          Details.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[out] T
        !            95: *> \verbatim
        !            96: *>          T is DOUBLE PRECISION array, dimension (LDT,NB)
        !            97: *>          The upper triangular matrix T.
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in] LDT
        !           101: *> \verbatim
        !           102: *>          LDT is INTEGER
        !           103: *>          The leading dimension of the array T.  LDT >= NB.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[out] Y
        !           107: *> \verbatim
        !           108: *>          Y is DOUBLE PRECISION array, dimension (LDY,NB)
        !           109: *>          The n-by-nb matrix Y.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] LDY
        !           113: *> \verbatim
        !           114: *>          LDY is INTEGER
        !           115: *>          The leading dimension of the array Y. LDY >= N.
        !           116: *> \endverbatim
        !           117: *
        !           118: *  Authors:
        !           119: *  ========
        !           120: *
        !           121: *> \author Univ. of Tennessee 
        !           122: *> \author Univ. of California Berkeley 
        !           123: *> \author Univ. of Colorado Denver 
        !           124: *> \author NAG Ltd. 
        !           125: *
        !           126: *> \date November 2011
        !           127: *
        !           128: *> \ingroup doubleOTHERauxiliary
        !           129: *
        !           130: *> \par Further Details:
        !           131: *  =====================
        !           132: *>
        !           133: *> \verbatim
        !           134: *>
        !           135: *>  The matrix Q is represented as a product of nb elementary reflectors
        !           136: *>
        !           137: *>     Q = H(1) H(2) . . . H(nb).
        !           138: *>
        !           139: *>  Each H(i) has the form
        !           140: *>
        !           141: *>     H(i) = I - tau * v * v**T
        !           142: *>
        !           143: *>  where tau is a real scalar, and v is a real vector with
        !           144: *>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
        !           145: *>  A(i+k+1:n,i), and tau in TAU(i).
        !           146: *>
        !           147: *>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
        !           148: *>  V which is needed, with T and Y, to apply the transformation to the
        !           149: *>  unreduced part of the matrix, using an update of the form:
        !           150: *>  A := (I - V*T*V**T) * (A - Y*V**T).
        !           151: *>
        !           152: *>  The contents of A on exit are illustrated by the following example
        !           153: *>  with n = 7, k = 3 and nb = 2:
        !           154: *>
        !           155: *>     ( a   a   a   a   a )
        !           156: *>     ( a   a   a   a   a )
        !           157: *>     ( a   a   a   a   a )
        !           158: *>     ( h   h   a   a   a )
        !           159: *>     ( v1  h   a   a   a )
        !           160: *>     ( v1  v2  a   a   a )
        !           161: *>     ( v1  v2  a   a   a )
        !           162: *>
        !           163: *>  where a denotes an element of the original matrix A, h denotes a
        !           164: *>  modified element of the upper Hessenberg matrix H, and vi denotes an
        !           165: *>  element of the vector defining H(i).
        !           166: *>
        !           167: *>  This subroutine is a slight modification of LAPACK-3.0's DLAHRD
        !           168: *>  incorporating improvements proposed by Quintana-Orti and Van de
        !           169: *>  Gejin. Note that the entries of A(1:K,2:NB) differ from those
        !           170: *>  returned by the original LAPACK-3.0's DLAHRD routine. (This
        !           171: *>  subroutine is not backward compatible with LAPACK-3.0's DLAHRD.)
        !           172: *> \endverbatim
        !           173: *
        !           174: *> \par References:
        !           175: *  ================
        !           176: *>
        !           177: *>  Gregorio Quintana-Orti and Robert van de Geijn, "Improving the
        !           178: *>  performance of reduction to Hessenberg form," ACM Transactions on
        !           179: *>  Mathematical Software, 32(2):180-194, June 2006.
        !           180: *>
        !           181: *  =====================================================================
1.1       bertrand  182:       SUBROUTINE DLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
                    183: *
1.9     ! bertrand  184: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  185: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    186: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  187: *     November 2011
1.1       bertrand  188: *
                    189: *     .. Scalar Arguments ..
                    190:       INTEGER            K, LDA, LDT, LDY, N, NB
                    191: *     ..
                    192: *     .. Array Arguments ..
                    193:       DOUBLE PRECISION  A( LDA, * ), T( LDT, NB ), TAU( NB ),
                    194:      $                   Y( LDY, NB )
                    195: *     ..
                    196: *
                    197: *  =====================================================================
                    198: *
                    199: *     .. Parameters ..
                    200:       DOUBLE PRECISION  ZERO, ONE
                    201:       PARAMETER          ( ZERO = 0.0D+0, 
                    202:      $                     ONE = 1.0D+0 )
                    203: *     ..
                    204: *     .. Local Scalars ..
                    205:       INTEGER            I
                    206:       DOUBLE PRECISION  EI
                    207: *     ..
                    208: *     .. External Subroutines ..
                    209:       EXTERNAL           DAXPY, DCOPY, DGEMM, DGEMV, DLACPY,
                    210:      $                   DLARFG, DSCAL, DTRMM, DTRMV
                    211: *     ..
                    212: *     .. Intrinsic Functions ..
                    213:       INTRINSIC          MIN
                    214: *     ..
                    215: *     .. Executable Statements ..
                    216: *
                    217: *     Quick return if possible
                    218: *
                    219:       IF( N.LE.1 )
                    220:      $   RETURN
                    221: *
                    222:       DO 10 I = 1, NB
                    223:          IF( I.GT.1 ) THEN
                    224: *
                    225: *           Update A(K+1:N,I)
                    226: *
1.8       bertrand  227: *           Update I-th column of A - Y * V**T
1.1       bertrand  228: *
                    229:             CALL DGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, Y(K+1,1), LDY,
                    230:      $                  A( K+I-1, 1 ), LDA, ONE, A( K+1, I ), 1 )
                    231: *
1.8       bertrand  232: *           Apply I - V * T**T * V**T to this column (call it b) from the
1.1       bertrand  233: *           left, using the last column of T as workspace
                    234: *
                    235: *           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
                    236: *                    ( V2 )             ( b2 )
                    237: *
                    238: *           where V1 is unit lower triangular
                    239: *
1.8       bertrand  240: *           w := V1**T * b1
1.1       bertrand  241: *
                    242:             CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
                    243:             CALL DTRMV( 'Lower', 'Transpose', 'UNIT', 
                    244:      $                  I-1, A( K+1, 1 ),
                    245:      $                  LDA, T( 1, NB ), 1 )
                    246: *
1.8       bertrand  247: *           w := w + V2**T * b2
1.1       bertrand  248: *
                    249:             CALL DGEMV( 'Transpose', N-K-I+1, I-1, 
                    250:      $                  ONE, A( K+I, 1 ),
                    251:      $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
                    252: *
1.8       bertrand  253: *           w := T**T * w
1.1       bertrand  254: *
                    255:             CALL DTRMV( 'Upper', 'Transpose', 'NON-UNIT', 
                    256:      $                  I-1, T, LDT,
                    257:      $                  T( 1, NB ), 1 )
                    258: *
                    259: *           b2 := b2 - V2*w
                    260: *
                    261:             CALL DGEMV( 'NO TRANSPOSE', N-K-I+1, I-1, -ONE, 
                    262:      $                  A( K+I, 1 ),
                    263:      $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
                    264: *
                    265: *           b1 := b1 - V1*w
                    266: *
                    267:             CALL DTRMV( 'Lower', 'NO TRANSPOSE', 
                    268:      $                  'UNIT', I-1,
                    269:      $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
                    270:             CALL DAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
                    271: *
                    272:             A( K+I-1, I-1 ) = EI
                    273:          END IF
                    274: *
                    275: *        Generate the elementary reflector H(I) to annihilate
                    276: *        A(K+I+1:N,I)
                    277: *
                    278:          CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
                    279:      $                TAU( I ) )
                    280:          EI = A( K+I, I )
                    281:          A( K+I, I ) = ONE
                    282: *
                    283: *        Compute  Y(K+1:N,I)
                    284: *
                    285:          CALL DGEMV( 'NO TRANSPOSE', N-K, N-K-I+1, 
                    286:      $               ONE, A( K+1, I+1 ),
                    287:      $               LDA, A( K+I, I ), 1, ZERO, Y( K+1, I ), 1 )
                    288:          CALL DGEMV( 'Transpose', N-K-I+1, I-1, 
                    289:      $               ONE, A( K+I, 1 ), LDA,
                    290:      $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
                    291:          CALL DGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, 
                    292:      $               Y( K+1, 1 ), LDY,
                    293:      $               T( 1, I ), 1, ONE, Y( K+1, I ), 1 )
                    294:          CALL DSCAL( N-K, TAU( I ), Y( K+1, I ), 1 )
                    295: *
                    296: *        Compute T(1:I,I)
                    297: *
                    298:          CALL DSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
                    299:          CALL DTRMV( 'Upper', 'No Transpose', 'NON-UNIT', 
                    300:      $               I-1, T, LDT,
                    301:      $               T( 1, I ), 1 )
                    302:          T( I, I ) = TAU( I )
                    303: *
                    304:    10 CONTINUE
                    305:       A( K+NB, NB ) = EI
                    306: *
                    307: *     Compute Y(1:K,1:NB)
                    308: *
                    309:       CALL DLACPY( 'ALL', K, NB, A( 1, 2 ), LDA, Y, LDY )
                    310:       CALL DTRMM( 'RIGHT', 'Lower', 'NO TRANSPOSE', 
                    311:      $            'UNIT', K, NB,
                    312:      $            ONE, A( K+1, 1 ), LDA, Y, LDY )
                    313:       IF( N.GT.K+NB )
                    314:      $   CALL DGEMM( 'NO TRANSPOSE', 'NO TRANSPOSE', K, 
                    315:      $               NB, N-K-NB, ONE,
                    316:      $               A( 1, 2+NB ), LDA, A( K+1+NB, 1 ), LDA, ONE, Y,
                    317:      $               LDY )
                    318:       CALL DTRMM( 'RIGHT', 'Upper', 'NO TRANSPOSE', 
                    319:      $            'NON-UNIT', K, NB,
                    320:      $            ONE, T, LDT, Y, LDY )
                    321: *
                    322:       RETURN
                    323: *
                    324: *     End of DLAHR2
                    325: *
                    326:       END

CVSweb interface <joel.bertrand@systella.fr>