Annotation of rpl/lapack/lapack/dlahr2.f, revision 1.16

1.12      bertrand    1: *> \brief \b DLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16    ! bertrand    5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16    ! bertrand    9: *> Download DLAHR2 + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahr2.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahr2.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahr2.f">
1.9       bertrand   15: *> [TXT]</a>
1.16    ! bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
1.16    ! bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            K, LDA, LDT, LDY, N, NB
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION  A( LDA, * ), T( LDT, NB ), TAU( NB ),
                     28: *      $                   Y( LDY, NB )
                     29: *       ..
1.16    ! bertrand   30: *
1.9       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1)
                     38: *> matrix A so that elements below the k-th subdiagonal are zero. The
                     39: *> reduction is performed by an orthogonal similarity transformation
                     40: *> Q**T * A * Q. The routine returns the matrices V and T which determine
                     41: *> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
                     42: *>
                     43: *> This is an auxiliary routine called by DGEHRD.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The order of the matrix A.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] K
                     56: *> \verbatim
                     57: *>          K is INTEGER
                     58: *>          The offset for the reduction. Elements below the k-th
                     59: *>          subdiagonal in the first NB columns are reduced to zero.
                     60: *>          K < N.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] NB
                     64: *> \verbatim
                     65: *>          NB is INTEGER
                     66: *>          The number of columns to be reduced.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in,out] A
                     70: *> \verbatim
                     71: *>          A is DOUBLE PRECISION array, dimension (LDA,N-K+1)
                     72: *>          On entry, the n-by-(n-k+1) general matrix A.
                     73: *>          On exit, the elements on and above the k-th subdiagonal in
                     74: *>          the first NB columns are overwritten with the corresponding
                     75: *>          elements of the reduced matrix; the elements below the k-th
                     76: *>          subdiagonal, with the array TAU, represent the matrix Q as a
                     77: *>          product of elementary reflectors. The other columns of A are
                     78: *>          unchanged. See Further Details.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] LDA
                     82: *> \verbatim
                     83: *>          LDA is INTEGER
                     84: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] TAU
                     88: *> \verbatim
                     89: *>          TAU is DOUBLE PRECISION array, dimension (NB)
                     90: *>          The scalar factors of the elementary reflectors. See Further
                     91: *>          Details.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[out] T
                     95: *> \verbatim
                     96: *>          T is DOUBLE PRECISION array, dimension (LDT,NB)
                     97: *>          The upper triangular matrix T.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDT
                    101: *> \verbatim
                    102: *>          LDT is INTEGER
                    103: *>          The leading dimension of the array T.  LDT >= NB.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[out] Y
                    107: *> \verbatim
                    108: *>          Y is DOUBLE PRECISION array, dimension (LDY,NB)
                    109: *>          The n-by-nb matrix Y.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDY
                    113: *> \verbatim
                    114: *>          LDY is INTEGER
                    115: *>          The leading dimension of the array Y. LDY >= N.
                    116: *> \endverbatim
                    117: *
                    118: *  Authors:
                    119: *  ========
                    120: *
1.16    ! bertrand  121: *> \author Univ. of Tennessee
        !           122: *> \author Univ. of California Berkeley
        !           123: *> \author Univ. of Colorado Denver
        !           124: *> \author NAG Ltd.
1.9       bertrand  125: *
1.16    ! bertrand  126: *> \date December 2016
1.9       bertrand  127: *
                    128: *> \ingroup doubleOTHERauxiliary
                    129: *
                    130: *> \par Further Details:
                    131: *  =====================
                    132: *>
                    133: *> \verbatim
                    134: *>
                    135: *>  The matrix Q is represented as a product of nb elementary reflectors
                    136: *>
                    137: *>     Q = H(1) H(2) . . . H(nb).
                    138: *>
                    139: *>  Each H(i) has the form
                    140: *>
                    141: *>     H(i) = I - tau * v * v**T
                    142: *>
                    143: *>  where tau is a real scalar, and v is a real vector with
                    144: *>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
                    145: *>  A(i+k+1:n,i), and tau in TAU(i).
                    146: *>
                    147: *>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
                    148: *>  V which is needed, with T and Y, to apply the transformation to the
                    149: *>  unreduced part of the matrix, using an update of the form:
                    150: *>  A := (I - V*T*V**T) * (A - Y*V**T).
                    151: *>
                    152: *>  The contents of A on exit are illustrated by the following example
                    153: *>  with n = 7, k = 3 and nb = 2:
                    154: *>
                    155: *>     ( a   a   a   a   a )
                    156: *>     ( a   a   a   a   a )
                    157: *>     ( a   a   a   a   a )
                    158: *>     ( h   h   a   a   a )
                    159: *>     ( v1  h   a   a   a )
                    160: *>     ( v1  v2  a   a   a )
                    161: *>     ( v1  v2  a   a   a )
                    162: *>
                    163: *>  where a denotes an element of the original matrix A, h denotes a
                    164: *>  modified element of the upper Hessenberg matrix H, and vi denotes an
                    165: *>  element of the vector defining H(i).
                    166: *>
                    167: *>  This subroutine is a slight modification of LAPACK-3.0's DLAHRD
                    168: *>  incorporating improvements proposed by Quintana-Orti and Van de
                    169: *>  Gejin. Note that the entries of A(1:K,2:NB) differ from those
                    170: *>  returned by the original LAPACK-3.0's DLAHRD routine. (This
                    171: *>  subroutine is not backward compatible with LAPACK-3.0's DLAHRD.)
                    172: *> \endverbatim
                    173: *
                    174: *> \par References:
                    175: *  ================
                    176: *>
                    177: *>  Gregorio Quintana-Orti and Robert van de Geijn, "Improving the
                    178: *>  performance of reduction to Hessenberg form," ACM Transactions on
                    179: *>  Mathematical Software, 32(2):180-194, June 2006.
                    180: *>
                    181: *  =====================================================================
1.1       bertrand  182:       SUBROUTINE DLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
                    183: *
1.16    ! bertrand  184: *  -- LAPACK auxiliary routine (version 3.7.0) --
1.1       bertrand  185: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    186: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.16    ! bertrand  187: *     December 2016
1.1       bertrand  188: *
                    189: *     .. Scalar Arguments ..
                    190:       INTEGER            K, LDA, LDT, LDY, N, NB
                    191: *     ..
                    192: *     .. Array Arguments ..
                    193:       DOUBLE PRECISION  A( LDA, * ), T( LDT, NB ), TAU( NB ),
                    194:      $                   Y( LDY, NB )
                    195: *     ..
                    196: *
                    197: *  =====================================================================
                    198: *
                    199: *     .. Parameters ..
                    200:       DOUBLE PRECISION  ZERO, ONE
1.16    ! bertrand  201:       PARAMETER          ( ZERO = 0.0D+0,
1.1       bertrand  202:      $                     ONE = 1.0D+0 )
                    203: *     ..
                    204: *     .. Local Scalars ..
                    205:       INTEGER            I
                    206:       DOUBLE PRECISION  EI
                    207: *     ..
                    208: *     .. External Subroutines ..
                    209:       EXTERNAL           DAXPY, DCOPY, DGEMM, DGEMV, DLACPY,
                    210:      $                   DLARFG, DSCAL, DTRMM, DTRMV
                    211: *     ..
                    212: *     .. Intrinsic Functions ..
                    213:       INTRINSIC          MIN
                    214: *     ..
                    215: *     .. Executable Statements ..
                    216: *
                    217: *     Quick return if possible
                    218: *
                    219:       IF( N.LE.1 )
                    220:      $   RETURN
                    221: *
                    222:       DO 10 I = 1, NB
                    223:          IF( I.GT.1 ) THEN
                    224: *
                    225: *           Update A(K+1:N,I)
                    226: *
1.8       bertrand  227: *           Update I-th column of A - Y * V**T
1.1       bertrand  228: *
                    229:             CALL DGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, Y(K+1,1), LDY,
                    230:      $                  A( K+I-1, 1 ), LDA, ONE, A( K+1, I ), 1 )
                    231: *
1.8       bertrand  232: *           Apply I - V * T**T * V**T to this column (call it b) from the
1.1       bertrand  233: *           left, using the last column of T as workspace
                    234: *
                    235: *           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
                    236: *                    ( V2 )             ( b2 )
                    237: *
                    238: *           where V1 is unit lower triangular
                    239: *
1.8       bertrand  240: *           w := V1**T * b1
1.1       bertrand  241: *
                    242:             CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
1.16    ! bertrand  243:             CALL DTRMV( 'Lower', 'Transpose', 'UNIT',
1.1       bertrand  244:      $                  I-1, A( K+1, 1 ),
                    245:      $                  LDA, T( 1, NB ), 1 )
                    246: *
1.8       bertrand  247: *           w := w + V2**T * b2
1.1       bertrand  248: *
1.16    ! bertrand  249:             CALL DGEMV( 'Transpose', N-K-I+1, I-1,
1.1       bertrand  250:      $                  ONE, A( K+I, 1 ),
                    251:      $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
                    252: *
1.8       bertrand  253: *           w := T**T * w
1.1       bertrand  254: *
1.16    ! bertrand  255:             CALL DTRMV( 'Upper', 'Transpose', 'NON-UNIT',
1.1       bertrand  256:      $                  I-1, T, LDT,
                    257:      $                  T( 1, NB ), 1 )
                    258: *
                    259: *           b2 := b2 - V2*w
                    260: *
1.16    ! bertrand  261:             CALL DGEMV( 'NO TRANSPOSE', N-K-I+1, I-1, -ONE,
1.1       bertrand  262:      $                  A( K+I, 1 ),
                    263:      $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
                    264: *
                    265: *           b1 := b1 - V1*w
                    266: *
1.16    ! bertrand  267:             CALL DTRMV( 'Lower', 'NO TRANSPOSE',
1.1       bertrand  268:      $                  'UNIT', I-1,
                    269:      $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
                    270:             CALL DAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
                    271: *
                    272:             A( K+I-1, I-1 ) = EI
                    273:          END IF
                    274: *
                    275: *        Generate the elementary reflector H(I) to annihilate
                    276: *        A(K+I+1:N,I)
                    277: *
                    278:          CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
                    279:      $                TAU( I ) )
                    280:          EI = A( K+I, I )
                    281:          A( K+I, I ) = ONE
                    282: *
                    283: *        Compute  Y(K+1:N,I)
                    284: *
1.16    ! bertrand  285:          CALL DGEMV( 'NO TRANSPOSE', N-K, N-K-I+1,
1.1       bertrand  286:      $               ONE, A( K+1, I+1 ),
                    287:      $               LDA, A( K+I, I ), 1, ZERO, Y( K+1, I ), 1 )
1.16    ! bertrand  288:          CALL DGEMV( 'Transpose', N-K-I+1, I-1,
1.1       bertrand  289:      $               ONE, A( K+I, 1 ), LDA,
                    290:      $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
1.16    ! bertrand  291:          CALL DGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE,
1.1       bertrand  292:      $               Y( K+1, 1 ), LDY,
                    293:      $               T( 1, I ), 1, ONE, Y( K+1, I ), 1 )
                    294:          CALL DSCAL( N-K, TAU( I ), Y( K+1, I ), 1 )
                    295: *
                    296: *        Compute T(1:I,I)
                    297: *
                    298:          CALL DSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
1.16    ! bertrand  299:          CALL DTRMV( 'Upper', 'No Transpose', 'NON-UNIT',
1.1       bertrand  300:      $               I-1, T, LDT,
                    301:      $               T( 1, I ), 1 )
                    302:          T( I, I ) = TAU( I )
                    303: *
                    304:    10 CONTINUE
                    305:       A( K+NB, NB ) = EI
                    306: *
                    307: *     Compute Y(1:K,1:NB)
                    308: *
                    309:       CALL DLACPY( 'ALL', K, NB, A( 1, 2 ), LDA, Y, LDY )
1.16    ! bertrand  310:       CALL DTRMM( 'RIGHT', 'Lower', 'NO TRANSPOSE',
1.1       bertrand  311:      $            'UNIT', K, NB,
                    312:      $            ONE, A( K+1, 1 ), LDA, Y, LDY )
                    313:       IF( N.GT.K+NB )
1.16    ! bertrand  314:      $   CALL DGEMM( 'NO TRANSPOSE', 'NO TRANSPOSE', K,
1.1       bertrand  315:      $               NB, N-K-NB, ONE,
                    316:      $               A( 1, 2+NB ), LDA, A( K+1+NB, 1 ), LDA, ONE, Y,
                    317:      $               LDY )
1.16    ! bertrand  318:       CALL DTRMM( 'RIGHT', 'Upper', 'NO TRANSPOSE',
1.1       bertrand  319:      $            'NON-UNIT', K, NB,
                    320:      $            ONE, T, LDT, Y, LDY )
                    321: *
                    322:       RETURN
                    323: *
                    324: *     End of DLAHR2
                    325: *
                    326:       END

CVSweb interface <joel.bertrand@systella.fr>