File:  [local] / rpl / lapack / lapack / dlahqr.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:26 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
    2:      $                   ILOZ, IHIZ, Z, LDZ, INFO )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
   10:       LOGICAL            WANTT, WANTZ
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
   14: *     ..
   15: *
   16: *     Purpose
   17: *     =======
   18: *
   19: *     DLAHQR is an auxiliary routine called by DHSEQR to update the
   20: *     eigenvalues and Schur decomposition already computed by DHSEQR, by
   21: *     dealing with the Hessenberg submatrix in rows and columns ILO to
   22: *     IHI.
   23: *
   24: *     Arguments
   25: *     =========
   26: *
   27: *     WANTT   (input) LOGICAL
   28: *          = .TRUE. : the full Schur form T is required;
   29: *          = .FALSE.: only eigenvalues are required.
   30: *
   31: *     WANTZ   (input) LOGICAL
   32: *          = .TRUE. : the matrix of Schur vectors Z is required;
   33: *          = .FALSE.: Schur vectors are not required.
   34: *
   35: *     N       (input) INTEGER
   36: *          The order of the matrix H.  N >= 0.
   37: *
   38: *     ILO     (input) INTEGER
   39: *     IHI     (input) INTEGER
   40: *          It is assumed that H is already upper quasi-triangular in
   41: *          rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
   42: *          ILO = 1). DLAHQR works primarily with the Hessenberg
   43: *          submatrix in rows and columns ILO to IHI, but applies
   44: *          transformations to all of H if WANTT is .TRUE..
   45: *          1 <= ILO <= max(1,IHI); IHI <= N.
   46: *
   47: *     H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
   48: *          On entry, the upper Hessenberg matrix H.
   49: *          On exit, if INFO is zero and if WANTT is .TRUE., H is upper
   50: *          quasi-triangular in rows and columns ILO:IHI, with any
   51: *          2-by-2 diagonal blocks in standard form. If INFO is zero
   52: *          and WANTT is .FALSE., the contents of H are unspecified on
   53: *          exit.  The output state of H if INFO is nonzero is given
   54: *          below under the description of INFO.
   55: *
   56: *     LDH     (input) INTEGER
   57: *          The leading dimension of the array H. LDH >= max(1,N).
   58: *
   59: *     WR      (output) DOUBLE PRECISION array, dimension (N)
   60: *     WI      (output) DOUBLE PRECISION array, dimension (N)
   61: *          The real and imaginary parts, respectively, of the computed
   62: *          eigenvalues ILO to IHI are stored in the corresponding
   63: *          elements of WR and WI. If two eigenvalues are computed as a
   64: *          complex conjugate pair, they are stored in consecutive
   65: *          elements of WR and WI, say the i-th and (i+1)th, with
   66: *          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
   67: *          eigenvalues are stored in the same order as on the diagonal
   68: *          of the Schur form returned in H, with WR(i) = H(i,i), and, if
   69: *          H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
   70: *          WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
   71: *
   72: *     ILOZ    (input) INTEGER
   73: *     IHIZ    (input) INTEGER
   74: *          Specify the rows of Z to which transformations must be
   75: *          applied if WANTZ is .TRUE..
   76: *          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
   77: *
   78: *     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
   79: *          If WANTZ is .TRUE., on entry Z must contain the current
   80: *          matrix Z of transformations accumulated by DHSEQR, and on
   81: *          exit Z has been updated; transformations are applied only to
   82: *          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
   83: *          If WANTZ is .FALSE., Z is not referenced.
   84: *
   85: *     LDZ     (input) INTEGER
   86: *          The leading dimension of the array Z. LDZ >= max(1,N).
   87: *
   88: *     INFO    (output) INTEGER
   89: *           =   0: successful exit
   90: *          .GT. 0: If INFO = i, DLAHQR failed to compute all the
   91: *                  eigenvalues ILO to IHI in a total of 30 iterations
   92: *                  per eigenvalue; elements i+1:ihi of WR and WI
   93: *                  contain those eigenvalues which have been
   94: *                  successfully computed.
   95: *
   96: *                  If INFO .GT. 0 and WANTT is .FALSE., then on exit,
   97: *                  the remaining unconverged eigenvalues are the
   98: *                  eigenvalues of the upper Hessenberg matrix rows
   99: *                  and columns ILO thorugh INFO of the final, output
  100: *                  value of H.
  101: *
  102: *                  If INFO .GT. 0 and WANTT is .TRUE., then on exit
  103: *          (*)       (initial value of H)*U  = U*(final value of H)
  104: *                  where U is an orthognal matrix.    The final
  105: *                  value of H is upper Hessenberg and triangular in
  106: *                  rows and columns INFO+1 through IHI.
  107: *
  108: *                  If INFO .GT. 0 and WANTZ is .TRUE., then on exit
  109: *                      (final value of Z)  = (initial value of Z)*U
  110: *                  where U is the orthogonal matrix in (*)
  111: *                  (regardless of the value of WANTT.)
  112: *
  113: *     Further Details
  114: *     ===============
  115: *
  116: *     02-96 Based on modifications by
  117: *     David Day, Sandia National Laboratory, USA
  118: *
  119: *     12-04 Further modifications by
  120: *     Ralph Byers, University of Kansas, USA
  121: *     This is a modified version of DLAHQR from LAPACK version 3.0.
  122: *     It is (1) more robust against overflow and underflow and
  123: *     (2) adopts the more conservative Ahues & Tisseur stopping
  124: *     criterion (LAWN 122, 1997).
  125: *
  126: *     =========================================================
  127: *
  128: *     .. Parameters ..
  129:       INTEGER            ITMAX
  130:       PARAMETER          ( ITMAX = 30 )
  131:       DOUBLE PRECISION   ZERO, ONE, TWO
  132:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0, TWO = 2.0d0 )
  133:       DOUBLE PRECISION   DAT1, DAT2
  134:       PARAMETER          ( DAT1 = 3.0d0 / 4.0d0, DAT2 = -0.4375d0 )
  135: *     ..
  136: *     .. Local Scalars ..
  137:       DOUBLE PRECISION   AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S,
  138:      $                   H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX,
  139:      $                   SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST,
  140:      $                   ULP, V2, V3
  141:       INTEGER            I, I1, I2, ITS, J, K, L, M, NH, NR, NZ
  142: *     ..
  143: *     .. Local Arrays ..
  144:       DOUBLE PRECISION   V( 3 )
  145: *     ..
  146: *     .. External Functions ..
  147:       DOUBLE PRECISION   DLAMCH
  148:       EXTERNAL           DLAMCH
  149: *     ..
  150: *     .. External Subroutines ..
  151:       EXTERNAL           DCOPY, DLABAD, DLANV2, DLARFG, DROT
  152: *     ..
  153: *     .. Intrinsic Functions ..
  154:       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
  155: *     ..
  156: *     .. Executable Statements ..
  157: *
  158:       INFO = 0
  159: *
  160: *     Quick return if possible
  161: *
  162:       IF( N.EQ.0 )
  163:      $   RETURN
  164:       IF( ILO.EQ.IHI ) THEN
  165:          WR( ILO ) = H( ILO, ILO )
  166:          WI( ILO ) = ZERO
  167:          RETURN
  168:       END IF
  169: *
  170: *     ==== clear out the trash ====
  171:       DO 10 J = ILO, IHI - 3
  172:          H( J+2, J ) = ZERO
  173:          H( J+3, J ) = ZERO
  174:    10 CONTINUE
  175:       IF( ILO.LE.IHI-2 )
  176:      $   H( IHI, IHI-2 ) = ZERO
  177: *
  178:       NH = IHI - ILO + 1
  179:       NZ = IHIZ - ILOZ + 1
  180: *
  181: *     Set machine-dependent constants for the stopping criterion.
  182: *
  183:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  184:       SAFMAX = ONE / SAFMIN
  185:       CALL DLABAD( SAFMIN, SAFMAX )
  186:       ULP = DLAMCH( 'PRECISION' )
  187:       SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
  188: *
  189: *     I1 and I2 are the indices of the first row and last column of H
  190: *     to which transformations must be applied. If eigenvalues only are
  191: *     being computed, I1 and I2 are set inside the main loop.
  192: *
  193:       IF( WANTT ) THEN
  194:          I1 = 1
  195:          I2 = N
  196:       END IF
  197: *
  198: *     The main loop begins here. I is the loop index and decreases from
  199: *     IHI to ILO in steps of 1 or 2. Each iteration of the loop works
  200: *     with the active submatrix in rows and columns L to I.
  201: *     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
  202: *     H(L,L-1) is negligible so that the matrix splits.
  203: *
  204:       I = IHI
  205:    20 CONTINUE
  206:       L = ILO
  207:       IF( I.LT.ILO )
  208:      $   GO TO 160
  209: *
  210: *     Perform QR iterations on rows and columns ILO to I until a
  211: *     submatrix of order 1 or 2 splits off at the bottom because a
  212: *     subdiagonal element has become negligible.
  213: *
  214:       DO 140 ITS = 0, ITMAX
  215: *
  216: *        Look for a single small subdiagonal element.
  217: *
  218:          DO 30 K = I, L + 1, -1
  219:             IF( ABS( H( K, K-1 ) ).LE.SMLNUM )
  220:      $         GO TO 40
  221:             TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
  222:             IF( TST.EQ.ZERO ) THEN
  223:                IF( K-2.GE.ILO )
  224:      $            TST = TST + ABS( H( K-1, K-2 ) )
  225:                IF( K+1.LE.IHI )
  226:      $            TST = TST + ABS( H( K+1, K ) )
  227:             END IF
  228: *           ==== The following is a conservative small subdiagonal
  229: *           .    deflation  criterion due to Ahues & Tisseur (LAWN 122,
  230: *           .    1997). It has better mathematical foundation and
  231: *           .    improves accuracy in some cases.  ====
  232:             IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN
  233:                AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
  234:                BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
  235:                AA = MAX( ABS( H( K, K ) ),
  236:      $              ABS( H( K-1, K-1 )-H( K, K ) ) )
  237:                BB = MIN( ABS( H( K, K ) ),
  238:      $              ABS( H( K-1, K-1 )-H( K, K ) ) )
  239:                S = AA + AB
  240:                IF( BA*( AB / S ).LE.MAX( SMLNUM,
  241:      $             ULP*( BB*( AA / S ) ) ) )GO TO 40
  242:             END IF
  243:    30    CONTINUE
  244:    40    CONTINUE
  245:          L = K
  246:          IF( L.GT.ILO ) THEN
  247: *
  248: *           H(L,L-1) is negligible
  249: *
  250:             H( L, L-1 ) = ZERO
  251:          END IF
  252: *
  253: *        Exit from loop if a submatrix of order 1 or 2 has split off.
  254: *
  255:          IF( L.GE.I-1 )
  256:      $      GO TO 150
  257: *
  258: *        Now the active submatrix is in rows and columns L to I. If
  259: *        eigenvalues only are being computed, only the active submatrix
  260: *        need be transformed.
  261: *
  262:          IF( .NOT.WANTT ) THEN
  263:             I1 = L
  264:             I2 = I
  265:          END IF
  266: *
  267:          IF( ITS.EQ.10 ) THEN
  268: *
  269: *           Exceptional shift.
  270: *
  271:             S = ABS( H( L+1, L ) ) + ABS( H( L+2, L+1 ) )
  272:             H11 = DAT1*S + H( L, L )
  273:             H12 = DAT2*S
  274:             H21 = S
  275:             H22 = H11
  276:          ELSE IF( ITS.EQ.20 ) THEN
  277: *
  278: *           Exceptional shift.
  279: *
  280:             S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
  281:             H11 = DAT1*S + H( I, I )
  282:             H12 = DAT2*S
  283:             H21 = S
  284:             H22 = H11
  285:          ELSE
  286: *
  287: *           Prepare to use Francis' double shift
  288: *           (i.e. 2nd degree generalized Rayleigh quotient)
  289: *
  290:             H11 = H( I-1, I-1 )
  291:             H21 = H( I, I-1 )
  292:             H12 = H( I-1, I )
  293:             H22 = H( I, I )
  294:          END IF
  295:          S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 )
  296:          IF( S.EQ.ZERO ) THEN
  297:             RT1R = ZERO
  298:             RT1I = ZERO
  299:             RT2R = ZERO
  300:             RT2I = ZERO
  301:          ELSE
  302:             H11 = H11 / S
  303:             H21 = H21 / S
  304:             H12 = H12 / S
  305:             H22 = H22 / S
  306:             TR = ( H11+H22 ) / TWO
  307:             DET = ( H11-TR )*( H22-TR ) - H12*H21
  308:             RTDISC = SQRT( ABS( DET ) )
  309:             IF( DET.GE.ZERO ) THEN
  310: *
  311: *              ==== complex conjugate shifts ====
  312: *
  313:                RT1R = TR*S
  314:                RT2R = RT1R
  315:                RT1I = RTDISC*S
  316:                RT2I = -RT1I
  317:             ELSE
  318: *
  319: *              ==== real shifts (use only one of them)  ====
  320: *
  321:                RT1R = TR + RTDISC
  322:                RT2R = TR - RTDISC
  323:                IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN
  324:                   RT1R = RT1R*S
  325:                   RT2R = RT1R
  326:                ELSE
  327:                   RT2R = RT2R*S
  328:                   RT1R = RT2R
  329:                END IF
  330:                RT1I = ZERO
  331:                RT2I = ZERO
  332:             END IF
  333:          END IF
  334: *
  335: *        Look for two consecutive small subdiagonal elements.
  336: *
  337:          DO 50 M = I - 2, L, -1
  338: *           Determine the effect of starting the double-shift QR
  339: *           iteration at row M, and see if this would make H(M,M-1)
  340: *           negligible.  (The following uses scaling to avoid
  341: *           overflows and most underflows.)
  342: *
  343:             H21S = H( M+1, M )
  344:             S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S )
  345:             H21S = H( M+1, M ) / S
  346:             V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )*
  347:      $               ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S )
  348:             V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R )
  349:             V( 3 ) = H21S*H( M+2, M+1 )
  350:             S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) )
  351:             V( 1 ) = V( 1 ) / S
  352:             V( 2 ) = V( 2 ) / S
  353:             V( 3 ) = V( 3 ) / S
  354:             IF( M.EQ.L )
  355:      $         GO TO 60
  356:             IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE.
  357:      $          ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M,
  358:      $          M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60
  359:    50    CONTINUE
  360:    60    CONTINUE
  361: *
  362: *        Double-shift QR step
  363: *
  364:          DO 130 K = M, I - 1
  365: *
  366: *           The first iteration of this loop determines a reflection G
  367: *           from the vector V and applies it from left and right to H,
  368: *           thus creating a nonzero bulge below the subdiagonal.
  369: *
  370: *           Each subsequent iteration determines a reflection G to
  371: *           restore the Hessenberg form in the (K-1)th column, and thus
  372: *           chases the bulge one step toward the bottom of the active
  373: *           submatrix. NR is the order of G.
  374: *
  375:             NR = MIN( 3, I-K+1 )
  376:             IF( K.GT.M )
  377:      $         CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
  378:             CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
  379:             IF( K.GT.M ) THEN
  380:                H( K, K-1 ) = V( 1 )
  381:                H( K+1, K-1 ) = ZERO
  382:                IF( K.LT.I-1 )
  383:      $            H( K+2, K-1 ) = ZERO
  384:             ELSE IF( M.GT.L ) THEN
  385: *               ==== Use the following instead of
  386: *               .    H( K, K-1 ) = -H( K, K-1 ) to
  387: *               .    avoid a bug when v(2) and v(3)
  388: *               .    underflow. ====
  389:                H( K, K-1 ) = H( K, K-1 )*( ONE-T1 )
  390:             END IF
  391:             V2 = V( 2 )
  392:             T2 = T1*V2
  393:             IF( NR.EQ.3 ) THEN
  394:                V3 = V( 3 )
  395:                T3 = T1*V3
  396: *
  397: *              Apply G from the left to transform the rows of the matrix
  398: *              in columns K to I2.
  399: *
  400:                DO 70 J = K, I2
  401:                   SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
  402:                   H( K, J ) = H( K, J ) - SUM*T1
  403:                   H( K+1, J ) = H( K+1, J ) - SUM*T2
  404:                   H( K+2, J ) = H( K+2, J ) - SUM*T3
  405:    70          CONTINUE
  406: *
  407: *              Apply G from the right to transform the columns of the
  408: *              matrix in rows I1 to min(K+3,I).
  409: *
  410:                DO 80 J = I1, MIN( K+3, I )
  411:                   SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
  412:                   H( J, K ) = H( J, K ) - SUM*T1
  413:                   H( J, K+1 ) = H( J, K+1 ) - SUM*T2
  414:                   H( J, K+2 ) = H( J, K+2 ) - SUM*T3
  415:    80          CONTINUE
  416: *
  417:                IF( WANTZ ) THEN
  418: *
  419: *                 Accumulate transformations in the matrix Z
  420: *
  421:                   DO 90 J = ILOZ, IHIZ
  422:                      SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
  423:                      Z( J, K ) = Z( J, K ) - SUM*T1
  424:                      Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
  425:                      Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
  426:    90             CONTINUE
  427:                END IF
  428:             ELSE IF( NR.EQ.2 ) THEN
  429: *
  430: *              Apply G from the left to transform the rows of the matrix
  431: *              in columns K to I2.
  432: *
  433:                DO 100 J = K, I2
  434:                   SUM = H( K, J ) + V2*H( K+1, J )
  435:                   H( K, J ) = H( K, J ) - SUM*T1
  436:                   H( K+1, J ) = H( K+1, J ) - SUM*T2
  437:   100          CONTINUE
  438: *
  439: *              Apply G from the right to transform the columns of the
  440: *              matrix in rows I1 to min(K+3,I).
  441: *
  442:                DO 110 J = I1, I
  443:                   SUM = H( J, K ) + V2*H( J, K+1 )
  444:                   H( J, K ) = H( J, K ) - SUM*T1
  445:                   H( J, K+1 ) = H( J, K+1 ) - SUM*T2
  446:   110          CONTINUE
  447: *
  448:                IF( WANTZ ) THEN
  449: *
  450: *                 Accumulate transformations in the matrix Z
  451: *
  452:                   DO 120 J = ILOZ, IHIZ
  453:                      SUM = Z( J, K ) + V2*Z( J, K+1 )
  454:                      Z( J, K ) = Z( J, K ) - SUM*T1
  455:                      Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
  456:   120             CONTINUE
  457:                END IF
  458:             END IF
  459:   130    CONTINUE
  460: *
  461:   140 CONTINUE
  462: *
  463: *     Failure to converge in remaining number of iterations
  464: *
  465:       INFO = I
  466:       RETURN
  467: *
  468:   150 CONTINUE
  469: *
  470:       IF( L.EQ.I ) THEN
  471: *
  472: *        H(I,I-1) is negligible: one eigenvalue has converged.
  473: *
  474:          WR( I ) = H( I, I )
  475:          WI( I ) = ZERO
  476:       ELSE IF( L.EQ.I-1 ) THEN
  477: *
  478: *        H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
  479: *
  480: *        Transform the 2-by-2 submatrix to standard Schur form,
  481: *        and compute and store the eigenvalues.
  482: *
  483:          CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
  484:      $                H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
  485:      $                CS, SN )
  486: *
  487:          IF( WANTT ) THEN
  488: *
  489: *           Apply the transformation to the rest of H.
  490: *
  491:             IF( I2.GT.I )
  492:      $         CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
  493:      $                    CS, SN )
  494:             CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
  495:          END IF
  496:          IF( WANTZ ) THEN
  497: *
  498: *           Apply the transformation to Z.
  499: *
  500:             CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
  501:          END IF
  502:       END IF
  503: *
  504: *     return to start of the main loop with new value of I.
  505: *
  506:       I = L - 1
  507:       GO TO 20
  508: *
  509:   160 CONTINUE
  510:       RETURN
  511: *
  512: *     End of DLAHQR
  513: *
  514:       END

CVSweb interface <joel.bertrand@systella.fr>