Annotation of rpl/lapack/lapack/dlahqr.f, revision 1.20

1.11      bertrand    1: *> \brief \b DLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DLAHQR + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahqr.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahqr.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahqr.f">
1.8       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
                     22: *                          ILOZ, IHIZ, Z, LDZ, INFO )
1.16      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
                     26: *       LOGICAL            WANTT, WANTZ
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
                     30: *       ..
1.16      bertrand   31: *
1.8       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *>    DLAHQR is an auxiliary routine called by DHSEQR to update the
                     39: *>    eigenvalues and Schur decomposition already computed by DHSEQR, by
                     40: *>    dealing with the Hessenberg submatrix in rows and columns ILO to
                     41: *>    IHI.
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] WANTT
                     48: *> \verbatim
                     49: *>          WANTT is LOGICAL
                     50: *>          = .TRUE. : the full Schur form T is required;
                     51: *>          = .FALSE.: only eigenvalues are required.
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] WANTZ
                     55: *> \verbatim
                     56: *>          WANTZ is LOGICAL
                     57: *>          = .TRUE. : the matrix of Schur vectors Z is required;
                     58: *>          = .FALSE.: Schur vectors are not required.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix H.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] ILO
                     68: *> \verbatim
                     69: *>          ILO is INTEGER
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] IHI
                     73: *> \verbatim
                     74: *>          IHI is INTEGER
                     75: *>          It is assumed that H is already upper quasi-triangular in
                     76: *>          rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
                     77: *>          ILO = 1). DLAHQR works primarily with the Hessenberg
                     78: *>          submatrix in rows and columns ILO to IHI, but applies
                     79: *>          transformations to all of H if WANTT is .TRUE..
                     80: *>          1 <= ILO <= max(1,IHI); IHI <= N.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in,out] H
                     84: *> \verbatim
                     85: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
                     86: *>          On entry, the upper Hessenberg matrix H.
                     87: *>          On exit, if INFO is zero and if WANTT is .TRUE., H is upper
                     88: *>          quasi-triangular in rows and columns ILO:IHI, with any
                     89: *>          2-by-2 diagonal blocks in standard form. If INFO is zero
                     90: *>          and WANTT is .FALSE., the contents of H are unspecified on
                     91: *>          exit.  The output state of H if INFO is nonzero is given
                     92: *>          below under the description of INFO.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LDH
                     96: *> \verbatim
                     97: *>          LDH is INTEGER
                     98: *>          The leading dimension of the array H. LDH >= max(1,N).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] WR
                    102: *> \verbatim
                    103: *>          WR is DOUBLE PRECISION array, dimension (N)
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[out] WI
                    107: *> \verbatim
                    108: *>          WI is DOUBLE PRECISION array, dimension (N)
                    109: *>          The real and imaginary parts, respectively, of the computed
                    110: *>          eigenvalues ILO to IHI are stored in the corresponding
                    111: *>          elements of WR and WI. If two eigenvalues are computed as a
                    112: *>          complex conjugate pair, they are stored in consecutive
                    113: *>          elements of WR and WI, say the i-th and (i+1)th, with
                    114: *>          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
                    115: *>          eigenvalues are stored in the same order as on the diagonal
                    116: *>          of the Schur form returned in H, with WR(i) = H(i,i), and, if
                    117: *>          H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
                    118: *>          WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] ILOZ
                    122: *> \verbatim
                    123: *>          ILOZ is INTEGER
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in] IHIZ
                    127: *> \verbatim
                    128: *>          IHIZ is INTEGER
                    129: *>          Specify the rows of Z to which transformations must be
                    130: *>          applied if WANTZ is .TRUE..
                    131: *>          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in,out] Z
                    135: *> \verbatim
                    136: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
                    137: *>          If WANTZ is .TRUE., on entry Z must contain the current
                    138: *>          matrix Z of transformations accumulated by DHSEQR, and on
                    139: *>          exit Z has been updated; transformations are applied only to
                    140: *>          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
                    141: *>          If WANTZ is .FALSE., Z is not referenced.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in] LDZ
                    145: *> \verbatim
                    146: *>          LDZ is INTEGER
                    147: *>          The leading dimension of the array Z. LDZ >= max(1,N).
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] INFO
                    151: *> \verbatim
                    152: *>          INFO is INTEGER
1.19      bertrand  153: *>           = 0:  successful exit
                    154: *>           > 0:  If INFO = i, DLAHQR failed to compute all the
1.8       bertrand  155: *>                  eigenvalues ILO to IHI in a total of 30 iterations
                    156: *>                  per eigenvalue; elements i+1:ihi of WR and WI
                    157: *>                  contain those eigenvalues which have been
                    158: *>                  successfully computed.
                    159: *>
1.19      bertrand  160: *>                  If INFO > 0 and WANTT is .FALSE., then on exit,
1.8       bertrand  161: *>                  the remaining unconverged eigenvalues are the
                    162: *>                  eigenvalues of the upper Hessenberg matrix rows
1.19      bertrand  163: *>                  and columns ILO through INFO of the final, output
1.8       bertrand  164: *>                  value of H.
                    165: *>
1.19      bertrand  166: *>                  If INFO > 0 and WANTT is .TRUE., then on exit
1.8       bertrand  167: *>          (*)       (initial value of H)*U  = U*(final value of H)
1.19      bertrand  168: *>                  where U is an orthogonal matrix.    The final
1.8       bertrand  169: *>                  value of H is upper Hessenberg and triangular in
                    170: *>                  rows and columns INFO+1 through IHI.
                    171: *>
1.19      bertrand  172: *>                  If INFO > 0 and WANTZ is .TRUE., then on exit
1.8       bertrand  173: *>                      (final value of Z)  = (initial value of Z)*U
                    174: *>                  where U is the orthogonal matrix in (*)
                    175: *>                  (regardless of the value of WANTT.)
                    176: *> \endverbatim
                    177: *
                    178: *  Authors:
                    179: *  ========
                    180: *
1.16      bertrand  181: *> \author Univ. of Tennessee
                    182: *> \author Univ. of California Berkeley
                    183: *> \author Univ. of Colorado Denver
                    184: *> \author NAG Ltd.
1.8       bertrand  185: *
                    186: *> \ingroup doubleOTHERauxiliary
                    187: *
                    188: *> \par Further Details:
                    189: *  =====================
                    190: *>
                    191: *> \verbatim
                    192: *>
                    193: *>     02-96 Based on modifications by
                    194: *>     David Day, Sandia National Laboratory, USA
                    195: *>
                    196: *>     12-04 Further modifications by
                    197: *>     Ralph Byers, University of Kansas, USA
                    198: *>     This is a modified version of DLAHQR from LAPACK version 3.0.
                    199: *>     It is (1) more robust against overflow and underflow and
                    200: *>     (2) adopts the more conservative Ahues & Tisseur stopping
                    201: *>     criterion (LAWN 122, 1997).
                    202: *> \endverbatim
                    203: *>
                    204: *  =====================================================================
1.1       bertrand  205:       SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
                    206:      $                   ILOZ, IHIZ, Z, LDZ, INFO )
1.20    ! bertrand  207:       IMPLICIT NONE
1.1       bertrand  208: *
1.20    ! bertrand  209: *  -- LAPACK auxiliary routine --
1.8       bertrand  210: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    211: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  212: *
                    213: *     .. Scalar Arguments ..
                    214:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
                    215:       LOGICAL            WANTT, WANTZ
                    216: *     ..
                    217: *     .. Array Arguments ..
                    218:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
                    219: *     ..
                    220: *
1.8       bertrand  221: *  =========================================================
1.1       bertrand  222: *
                    223: *     .. Parameters ..
                    224:       DOUBLE PRECISION   ZERO, ONE, TWO
                    225:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0, TWO = 2.0d0 )
                    226:       DOUBLE PRECISION   DAT1, DAT2
                    227:       PARAMETER          ( DAT1 = 3.0d0 / 4.0d0, DAT2 = -0.4375d0 )
1.20    ! bertrand  228:       INTEGER            KEXSH
        !           229:       PARAMETER          ( KEXSH = 10 )
1.1       bertrand  230: *     ..
                    231: *     .. Local Scalars ..
                    232:       DOUBLE PRECISION   AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S,
                    233:      $                   H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX,
                    234:      $                   SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST,
                    235:      $                   ULP, V2, V3
1.20    ! bertrand  236:       INTEGER            I, I1, I2, ITS, ITMAX, J, K, L, M, NH, NR, NZ,
        !           237:      $                   KDEFL 
1.1       bertrand  238: *     ..
                    239: *     .. Local Arrays ..
                    240:       DOUBLE PRECISION   V( 3 )
                    241: *     ..
                    242: *     .. External Functions ..
                    243:       DOUBLE PRECISION   DLAMCH
                    244:       EXTERNAL           DLAMCH
                    245: *     ..
                    246: *     .. External Subroutines ..
                    247:       EXTERNAL           DCOPY, DLABAD, DLANV2, DLARFG, DROT
                    248: *     ..
                    249: *     .. Intrinsic Functions ..
                    250:       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
                    251: *     ..
                    252: *     .. Executable Statements ..
                    253: *
                    254:       INFO = 0
                    255: *
                    256: *     Quick return if possible
                    257: *
                    258:       IF( N.EQ.0 )
                    259:      $   RETURN
                    260:       IF( ILO.EQ.IHI ) THEN
                    261:          WR( ILO ) = H( ILO, ILO )
                    262:          WI( ILO ) = ZERO
                    263:          RETURN
                    264:       END IF
                    265: *
                    266: *     ==== clear out the trash ====
                    267:       DO 10 J = ILO, IHI - 3
                    268:          H( J+2, J ) = ZERO
                    269:          H( J+3, J ) = ZERO
                    270:    10 CONTINUE
                    271:       IF( ILO.LE.IHI-2 )
                    272:      $   H( IHI, IHI-2 ) = ZERO
                    273: *
                    274:       NH = IHI - ILO + 1
                    275:       NZ = IHIZ - ILOZ + 1
                    276: *
                    277: *     Set machine-dependent constants for the stopping criterion.
                    278: *
                    279:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    280:       SAFMAX = ONE / SAFMIN
                    281:       CALL DLABAD( SAFMIN, SAFMAX )
                    282:       ULP = DLAMCH( 'PRECISION' )
                    283:       SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
                    284: *
                    285: *     I1 and I2 are the indices of the first row and last column of H
                    286: *     to which transformations must be applied. If eigenvalues only are
                    287: *     being computed, I1 and I2 are set inside the main loop.
                    288: *
                    289:       IF( WANTT ) THEN
                    290:          I1 = 1
                    291:          I2 = N
                    292:       END IF
                    293: *
1.14      bertrand  294: *     ITMAX is the total number of QR iterations allowed.
                    295: *
1.16      bertrand  296:       ITMAX = 30 * MAX( 10, NH )
1.14      bertrand  297: *
1.20    ! bertrand  298: *     KDEFL counts the number of iterations since a deflation
        !           299: *
        !           300:       KDEFL = 0
        !           301: *
1.1       bertrand  302: *     The main loop begins here. I is the loop index and decreases from
                    303: *     IHI to ILO in steps of 1 or 2. Each iteration of the loop works
                    304: *     with the active submatrix in rows and columns L to I.
                    305: *     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
                    306: *     H(L,L-1) is negligible so that the matrix splits.
                    307: *
                    308:       I = IHI
                    309:    20 CONTINUE
                    310:       L = ILO
                    311:       IF( I.LT.ILO )
                    312:      $   GO TO 160
                    313: *
                    314: *     Perform QR iterations on rows and columns ILO to I until a
                    315: *     submatrix of order 1 or 2 splits off at the bottom because a
                    316: *     subdiagonal element has become negligible.
                    317: *
                    318:       DO 140 ITS = 0, ITMAX
                    319: *
                    320: *        Look for a single small subdiagonal element.
                    321: *
                    322:          DO 30 K = I, L + 1, -1
                    323:             IF( ABS( H( K, K-1 ) ).LE.SMLNUM )
                    324:      $         GO TO 40
                    325:             TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
                    326:             IF( TST.EQ.ZERO ) THEN
                    327:                IF( K-2.GE.ILO )
                    328:      $            TST = TST + ABS( H( K-1, K-2 ) )
                    329:                IF( K+1.LE.IHI )
                    330:      $            TST = TST + ABS( H( K+1, K ) )
                    331:             END IF
                    332: *           ==== The following is a conservative small subdiagonal
                    333: *           .    deflation  criterion due to Ahues & Tisseur (LAWN 122,
                    334: *           .    1997). It has better mathematical foundation and
                    335: *           .    improves accuracy in some cases.  ====
                    336:             IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN
                    337:                AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
                    338:                BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
                    339:                AA = MAX( ABS( H( K, K ) ),
                    340:      $              ABS( H( K-1, K-1 )-H( K, K ) ) )
                    341:                BB = MIN( ABS( H( K, K ) ),
                    342:      $              ABS( H( K-1, K-1 )-H( K, K ) ) )
                    343:                S = AA + AB
                    344:                IF( BA*( AB / S ).LE.MAX( SMLNUM,
                    345:      $             ULP*( BB*( AA / S ) ) ) )GO TO 40
                    346:             END IF
                    347:    30    CONTINUE
                    348:    40    CONTINUE
                    349:          L = K
                    350:          IF( L.GT.ILO ) THEN
                    351: *
                    352: *           H(L,L-1) is negligible
                    353: *
                    354:             H( L, L-1 ) = ZERO
                    355:          END IF
                    356: *
                    357: *        Exit from loop if a submatrix of order 1 or 2 has split off.
                    358: *
                    359:          IF( L.GE.I-1 )
                    360:      $      GO TO 150
1.20    ! bertrand  361:          KDEFL = KDEFL + 1
1.1       bertrand  362: *
                    363: *        Now the active submatrix is in rows and columns L to I. If
                    364: *        eigenvalues only are being computed, only the active submatrix
                    365: *        need be transformed.
                    366: *
                    367:          IF( .NOT.WANTT ) THEN
                    368:             I1 = L
                    369:             I2 = I
                    370:          END IF
                    371: *
1.20    ! bertrand  372:          IF( MOD(KDEFL,2*KEXSH).EQ.0 ) THEN
1.1       bertrand  373: *
                    374: *           Exceptional shift.
                    375: *
1.20    ! bertrand  376:             S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
        !           377:             H11 = DAT1*S + H( I, I )
1.1       bertrand  378:             H12 = DAT2*S
                    379:             H21 = S
                    380:             H22 = H11
1.20    ! bertrand  381:          ELSE IF( MOD(KDEFL,KEXSH).EQ.0 ) THEN
1.1       bertrand  382: *
                    383: *           Exceptional shift.
                    384: *
1.20    ! bertrand  385:             S = ABS( H( L+1, L ) ) + ABS( H( L+2, L+1 ) )
        !           386:             H11 = DAT1*S + H( L, L )
1.1       bertrand  387:             H12 = DAT2*S
                    388:             H21 = S
                    389:             H22 = H11
                    390:          ELSE
                    391: *
                    392: *           Prepare to use Francis' double shift
                    393: *           (i.e. 2nd degree generalized Rayleigh quotient)
                    394: *
                    395:             H11 = H( I-1, I-1 )
                    396:             H21 = H( I, I-1 )
                    397:             H12 = H( I-1, I )
                    398:             H22 = H( I, I )
                    399:          END IF
                    400:          S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 )
                    401:          IF( S.EQ.ZERO ) THEN
                    402:             RT1R = ZERO
                    403:             RT1I = ZERO
                    404:             RT2R = ZERO
                    405:             RT2I = ZERO
                    406:          ELSE
                    407:             H11 = H11 / S
                    408:             H21 = H21 / S
                    409:             H12 = H12 / S
                    410:             H22 = H22 / S
                    411:             TR = ( H11+H22 ) / TWO
                    412:             DET = ( H11-TR )*( H22-TR ) - H12*H21
                    413:             RTDISC = SQRT( ABS( DET ) )
                    414:             IF( DET.GE.ZERO ) THEN
                    415: *
                    416: *              ==== complex conjugate shifts ====
                    417: *
                    418:                RT1R = TR*S
                    419:                RT2R = RT1R
                    420:                RT1I = RTDISC*S
                    421:                RT2I = -RT1I
                    422:             ELSE
                    423: *
                    424: *              ==== real shifts (use only one of them)  ====
                    425: *
                    426:                RT1R = TR + RTDISC
                    427:                RT2R = TR - RTDISC
                    428:                IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN
                    429:                   RT1R = RT1R*S
                    430:                   RT2R = RT1R
                    431:                ELSE
                    432:                   RT2R = RT2R*S
                    433:                   RT1R = RT2R
                    434:                END IF
                    435:                RT1I = ZERO
                    436:                RT2I = ZERO
                    437:             END IF
                    438:          END IF
                    439: *
                    440: *        Look for two consecutive small subdiagonal elements.
                    441: *
                    442:          DO 50 M = I - 2, L, -1
                    443: *           Determine the effect of starting the double-shift QR
                    444: *           iteration at row M, and see if this would make H(M,M-1)
                    445: *           negligible.  (The following uses scaling to avoid
                    446: *           overflows and most underflows.)
                    447: *
                    448:             H21S = H( M+1, M )
                    449:             S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S )
                    450:             H21S = H( M+1, M ) / S
                    451:             V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )*
                    452:      $               ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S )
                    453:             V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R )
                    454:             V( 3 ) = H21S*H( M+2, M+1 )
                    455:             S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) )
                    456:             V( 1 ) = V( 1 ) / S
                    457:             V( 2 ) = V( 2 ) / S
                    458:             V( 3 ) = V( 3 ) / S
                    459:             IF( M.EQ.L )
                    460:      $         GO TO 60
                    461:             IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE.
                    462:      $          ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M,
                    463:      $          M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60
                    464:    50    CONTINUE
                    465:    60    CONTINUE
                    466: *
                    467: *        Double-shift QR step
                    468: *
                    469:          DO 130 K = M, I - 1
                    470: *
                    471: *           The first iteration of this loop determines a reflection G
                    472: *           from the vector V and applies it from left and right to H,
                    473: *           thus creating a nonzero bulge below the subdiagonal.
                    474: *
                    475: *           Each subsequent iteration determines a reflection G to
                    476: *           restore the Hessenberg form in the (K-1)th column, and thus
                    477: *           chases the bulge one step toward the bottom of the active
                    478: *           submatrix. NR is the order of G.
                    479: *
                    480:             NR = MIN( 3, I-K+1 )
                    481:             IF( K.GT.M )
                    482:      $         CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
                    483:             CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
                    484:             IF( K.GT.M ) THEN
                    485:                H( K, K-1 ) = V( 1 )
                    486:                H( K+1, K-1 ) = ZERO
                    487:                IF( K.LT.I-1 )
                    488:      $            H( K+2, K-1 ) = ZERO
                    489:             ELSE IF( M.GT.L ) THEN
                    490: *               ==== Use the following instead of
                    491: *               .    H( K, K-1 ) = -H( K, K-1 ) to
                    492: *               .    avoid a bug when v(2) and v(3)
                    493: *               .    underflow. ====
                    494:                H( K, K-1 ) = H( K, K-1 )*( ONE-T1 )
                    495:             END IF
                    496:             V2 = V( 2 )
                    497:             T2 = T1*V2
                    498:             IF( NR.EQ.3 ) THEN
                    499:                V3 = V( 3 )
                    500:                T3 = T1*V3
                    501: *
                    502: *              Apply G from the left to transform the rows of the matrix
                    503: *              in columns K to I2.
                    504: *
                    505:                DO 70 J = K, I2
                    506:                   SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
                    507:                   H( K, J ) = H( K, J ) - SUM*T1
                    508:                   H( K+1, J ) = H( K+1, J ) - SUM*T2
                    509:                   H( K+2, J ) = H( K+2, J ) - SUM*T3
                    510:    70          CONTINUE
                    511: *
                    512: *              Apply G from the right to transform the columns of the
                    513: *              matrix in rows I1 to min(K+3,I).
                    514: *
                    515:                DO 80 J = I1, MIN( K+3, I )
                    516:                   SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
                    517:                   H( J, K ) = H( J, K ) - SUM*T1
                    518:                   H( J, K+1 ) = H( J, K+1 ) - SUM*T2
                    519:                   H( J, K+2 ) = H( J, K+2 ) - SUM*T3
                    520:    80          CONTINUE
                    521: *
                    522:                IF( WANTZ ) THEN
                    523: *
                    524: *                 Accumulate transformations in the matrix Z
                    525: *
                    526:                   DO 90 J = ILOZ, IHIZ
                    527:                      SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
                    528:                      Z( J, K ) = Z( J, K ) - SUM*T1
                    529:                      Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
                    530:                      Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
                    531:    90             CONTINUE
                    532:                END IF
                    533:             ELSE IF( NR.EQ.2 ) THEN
                    534: *
                    535: *              Apply G from the left to transform the rows of the matrix
                    536: *              in columns K to I2.
                    537: *
                    538:                DO 100 J = K, I2
                    539:                   SUM = H( K, J ) + V2*H( K+1, J )
                    540:                   H( K, J ) = H( K, J ) - SUM*T1
                    541:                   H( K+1, J ) = H( K+1, J ) - SUM*T2
                    542:   100          CONTINUE
                    543: *
                    544: *              Apply G from the right to transform the columns of the
                    545: *              matrix in rows I1 to min(K+3,I).
                    546: *
                    547:                DO 110 J = I1, I
                    548:                   SUM = H( J, K ) + V2*H( J, K+1 )
                    549:                   H( J, K ) = H( J, K ) - SUM*T1
                    550:                   H( J, K+1 ) = H( J, K+1 ) - SUM*T2
                    551:   110          CONTINUE
                    552: *
                    553:                IF( WANTZ ) THEN
                    554: *
                    555: *                 Accumulate transformations in the matrix Z
                    556: *
                    557:                   DO 120 J = ILOZ, IHIZ
                    558:                      SUM = Z( J, K ) + V2*Z( J, K+1 )
                    559:                      Z( J, K ) = Z( J, K ) - SUM*T1
                    560:                      Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
                    561:   120             CONTINUE
                    562:                END IF
                    563:             END IF
                    564:   130    CONTINUE
                    565: *
                    566:   140 CONTINUE
                    567: *
                    568: *     Failure to converge in remaining number of iterations
                    569: *
                    570:       INFO = I
                    571:       RETURN
                    572: *
                    573:   150 CONTINUE
                    574: *
                    575:       IF( L.EQ.I ) THEN
                    576: *
                    577: *        H(I,I-1) is negligible: one eigenvalue has converged.
                    578: *
                    579:          WR( I ) = H( I, I )
                    580:          WI( I ) = ZERO
                    581:       ELSE IF( L.EQ.I-1 ) THEN
                    582: *
                    583: *        H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
                    584: *
                    585: *        Transform the 2-by-2 submatrix to standard Schur form,
                    586: *        and compute and store the eigenvalues.
                    587: *
                    588:          CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
                    589:      $                H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
                    590:      $                CS, SN )
                    591: *
                    592:          IF( WANTT ) THEN
                    593: *
                    594: *           Apply the transformation to the rest of H.
                    595: *
                    596:             IF( I2.GT.I )
                    597:      $         CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
                    598:      $                    CS, SN )
                    599:             CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
                    600:          END IF
                    601:          IF( WANTZ ) THEN
                    602: *
                    603: *           Apply the transformation to Z.
                    604: *
                    605:             CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
                    606:          END IF
                    607:       END IF
1.20    ! bertrand  608: *     reset deflation counter
        !           609:       KDEFL = 0
1.1       bertrand  610: *
                    611: *     return to start of the main loop with new value of I.
                    612: *
                    613:       I = L - 1
                    614:       GO TO 20
                    615: *
                    616:   160 CONTINUE
                    617:       RETURN
                    618: *
                    619: *     End of DLAHQR
                    620: *
                    621:       END

CVSweb interface <joel.bertrand@systella.fr>