Annotation of rpl/lapack/lapack/dlahqr.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
        !             2:      $                   ILOZ, IHIZ, Z, LDZ, INFO )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
        !            10:       LOGICAL            WANTT, WANTZ
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
        !            14: *     ..
        !            15: *
        !            16: *     Purpose
        !            17: *     =======
        !            18: *
        !            19: *     DLAHQR is an auxiliary routine called by DHSEQR to update the
        !            20: *     eigenvalues and Schur decomposition already computed by DHSEQR, by
        !            21: *     dealing with the Hessenberg submatrix in rows and columns ILO to
        !            22: *     IHI.
        !            23: *
        !            24: *     Arguments
        !            25: *     =========
        !            26: *
        !            27: *     WANTT   (input) LOGICAL
        !            28: *          = .TRUE. : the full Schur form T is required;
        !            29: *          = .FALSE.: only eigenvalues are required.
        !            30: *
        !            31: *     WANTZ   (input) LOGICAL
        !            32: *          = .TRUE. : the matrix of Schur vectors Z is required;
        !            33: *          = .FALSE.: Schur vectors are not required.
        !            34: *
        !            35: *     N       (input) INTEGER
        !            36: *          The order of the matrix H.  N >= 0.
        !            37: *
        !            38: *     ILO     (input) INTEGER
        !            39: *     IHI     (input) INTEGER
        !            40: *          It is assumed that H is already upper quasi-triangular in
        !            41: *          rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
        !            42: *          ILO = 1). DLAHQR works primarily with the Hessenberg
        !            43: *          submatrix in rows and columns ILO to IHI, but applies
        !            44: *          transformations to all of H if WANTT is .TRUE..
        !            45: *          1 <= ILO <= max(1,IHI); IHI <= N.
        !            46: *
        !            47: *     H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
        !            48: *          On entry, the upper Hessenberg matrix H.
        !            49: *          On exit, if INFO is zero and if WANTT is .TRUE., H is upper
        !            50: *          quasi-triangular in rows and columns ILO:IHI, with any
        !            51: *          2-by-2 diagonal blocks in standard form. If INFO is zero
        !            52: *          and WANTT is .FALSE., the contents of H are unspecified on
        !            53: *          exit.  The output state of H if INFO is nonzero is given
        !            54: *          below under the description of INFO.
        !            55: *
        !            56: *     LDH     (input) INTEGER
        !            57: *          The leading dimension of the array H. LDH >= max(1,N).
        !            58: *
        !            59: *     WR      (output) DOUBLE PRECISION array, dimension (N)
        !            60: *     WI      (output) DOUBLE PRECISION array, dimension (N)
        !            61: *          The real and imaginary parts, respectively, of the computed
        !            62: *          eigenvalues ILO to IHI are stored in the corresponding
        !            63: *          elements of WR and WI. If two eigenvalues are computed as a
        !            64: *          complex conjugate pair, they are stored in consecutive
        !            65: *          elements of WR and WI, say the i-th and (i+1)th, with
        !            66: *          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
        !            67: *          eigenvalues are stored in the same order as on the diagonal
        !            68: *          of the Schur form returned in H, with WR(i) = H(i,i), and, if
        !            69: *          H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
        !            70: *          WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
        !            71: *
        !            72: *     ILOZ    (input) INTEGER
        !            73: *     IHIZ    (input) INTEGER
        !            74: *          Specify the rows of Z to which transformations must be
        !            75: *          applied if WANTZ is .TRUE..
        !            76: *          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
        !            77: *
        !            78: *     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
        !            79: *          If WANTZ is .TRUE., on entry Z must contain the current
        !            80: *          matrix Z of transformations accumulated by DHSEQR, and on
        !            81: *          exit Z has been updated; transformations are applied only to
        !            82: *          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
        !            83: *          If WANTZ is .FALSE., Z is not referenced.
        !            84: *
        !            85: *     LDZ     (input) INTEGER
        !            86: *          The leading dimension of the array Z. LDZ >= max(1,N).
        !            87: *
        !            88: *     INFO    (output) INTEGER
        !            89: *           =   0: successful exit
        !            90: *          .GT. 0: If INFO = i, DLAHQR failed to compute all the
        !            91: *                  eigenvalues ILO to IHI in a total of 30 iterations
        !            92: *                  per eigenvalue; elements i+1:ihi of WR and WI
        !            93: *                  contain those eigenvalues which have been
        !            94: *                  successfully computed.
        !            95: *
        !            96: *                  If INFO .GT. 0 and WANTT is .FALSE., then on exit,
        !            97: *                  the remaining unconverged eigenvalues are the
        !            98: *                  eigenvalues of the upper Hessenberg matrix rows
        !            99: *                  and columns ILO thorugh INFO of the final, output
        !           100: *                  value of H.
        !           101: *
        !           102: *                  If INFO .GT. 0 and WANTT is .TRUE., then on exit
        !           103: *          (*)       (initial value of H)*U  = U*(final value of H)
        !           104: *                  where U is an orthognal matrix.    The final
        !           105: *                  value of H is upper Hessenberg and triangular in
        !           106: *                  rows and columns INFO+1 through IHI.
        !           107: *
        !           108: *                  If INFO .GT. 0 and WANTZ is .TRUE., then on exit
        !           109: *                      (final value of Z)  = (initial value of Z)*U
        !           110: *                  where U is the orthogonal matrix in (*)
        !           111: *                  (regardless of the value of WANTT.)
        !           112: *
        !           113: *     Further Details
        !           114: *     ===============
        !           115: *
        !           116: *     02-96 Based on modifications by
        !           117: *     David Day, Sandia National Laboratory, USA
        !           118: *
        !           119: *     12-04 Further modifications by
        !           120: *     Ralph Byers, University of Kansas, USA
        !           121: *     This is a modified version of DLAHQR from LAPACK version 3.0.
        !           122: *     It is (1) more robust against overflow and underflow and
        !           123: *     (2) adopts the more conservative Ahues & Tisseur stopping
        !           124: *     criterion (LAWN 122, 1997).
        !           125: *
        !           126: *     =========================================================
        !           127: *
        !           128: *     .. Parameters ..
        !           129:       INTEGER            ITMAX
        !           130:       PARAMETER          ( ITMAX = 30 )
        !           131:       DOUBLE PRECISION   ZERO, ONE, TWO
        !           132:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0, TWO = 2.0d0 )
        !           133:       DOUBLE PRECISION   DAT1, DAT2
        !           134:       PARAMETER          ( DAT1 = 3.0d0 / 4.0d0, DAT2 = -0.4375d0 )
        !           135: *     ..
        !           136: *     .. Local Scalars ..
        !           137:       DOUBLE PRECISION   AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S,
        !           138:      $                   H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX,
        !           139:      $                   SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST,
        !           140:      $                   ULP, V2, V3
        !           141:       INTEGER            I, I1, I2, ITS, J, K, L, M, NH, NR, NZ
        !           142: *     ..
        !           143: *     .. Local Arrays ..
        !           144:       DOUBLE PRECISION   V( 3 )
        !           145: *     ..
        !           146: *     .. External Functions ..
        !           147:       DOUBLE PRECISION   DLAMCH
        !           148:       EXTERNAL           DLAMCH
        !           149: *     ..
        !           150: *     .. External Subroutines ..
        !           151:       EXTERNAL           DCOPY, DLABAD, DLANV2, DLARFG, DROT
        !           152: *     ..
        !           153: *     .. Intrinsic Functions ..
        !           154:       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
        !           155: *     ..
        !           156: *     .. Executable Statements ..
        !           157: *
        !           158:       INFO = 0
        !           159: *
        !           160: *     Quick return if possible
        !           161: *
        !           162:       IF( N.EQ.0 )
        !           163:      $   RETURN
        !           164:       IF( ILO.EQ.IHI ) THEN
        !           165:          WR( ILO ) = H( ILO, ILO )
        !           166:          WI( ILO ) = ZERO
        !           167:          RETURN
        !           168:       END IF
        !           169: *
        !           170: *     ==== clear out the trash ====
        !           171:       DO 10 J = ILO, IHI - 3
        !           172:          H( J+2, J ) = ZERO
        !           173:          H( J+3, J ) = ZERO
        !           174:    10 CONTINUE
        !           175:       IF( ILO.LE.IHI-2 )
        !           176:      $   H( IHI, IHI-2 ) = ZERO
        !           177: *
        !           178:       NH = IHI - ILO + 1
        !           179:       NZ = IHIZ - ILOZ + 1
        !           180: *
        !           181: *     Set machine-dependent constants for the stopping criterion.
        !           182: *
        !           183:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
        !           184:       SAFMAX = ONE / SAFMIN
        !           185:       CALL DLABAD( SAFMIN, SAFMAX )
        !           186:       ULP = DLAMCH( 'PRECISION' )
        !           187:       SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
        !           188: *
        !           189: *     I1 and I2 are the indices of the first row and last column of H
        !           190: *     to which transformations must be applied. If eigenvalues only are
        !           191: *     being computed, I1 and I2 are set inside the main loop.
        !           192: *
        !           193:       IF( WANTT ) THEN
        !           194:          I1 = 1
        !           195:          I2 = N
        !           196:       END IF
        !           197: *
        !           198: *     The main loop begins here. I is the loop index and decreases from
        !           199: *     IHI to ILO in steps of 1 or 2. Each iteration of the loop works
        !           200: *     with the active submatrix in rows and columns L to I.
        !           201: *     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
        !           202: *     H(L,L-1) is negligible so that the matrix splits.
        !           203: *
        !           204:       I = IHI
        !           205:    20 CONTINUE
        !           206:       L = ILO
        !           207:       IF( I.LT.ILO )
        !           208:      $   GO TO 160
        !           209: *
        !           210: *     Perform QR iterations on rows and columns ILO to I until a
        !           211: *     submatrix of order 1 or 2 splits off at the bottom because a
        !           212: *     subdiagonal element has become negligible.
        !           213: *
        !           214:       DO 140 ITS = 0, ITMAX
        !           215: *
        !           216: *        Look for a single small subdiagonal element.
        !           217: *
        !           218:          DO 30 K = I, L + 1, -1
        !           219:             IF( ABS( H( K, K-1 ) ).LE.SMLNUM )
        !           220:      $         GO TO 40
        !           221:             TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
        !           222:             IF( TST.EQ.ZERO ) THEN
        !           223:                IF( K-2.GE.ILO )
        !           224:      $            TST = TST + ABS( H( K-1, K-2 ) )
        !           225:                IF( K+1.LE.IHI )
        !           226:      $            TST = TST + ABS( H( K+1, K ) )
        !           227:             END IF
        !           228: *           ==== The following is a conservative small subdiagonal
        !           229: *           .    deflation  criterion due to Ahues & Tisseur (LAWN 122,
        !           230: *           .    1997). It has better mathematical foundation and
        !           231: *           .    improves accuracy in some cases.  ====
        !           232:             IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN
        !           233:                AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
        !           234:                BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
        !           235:                AA = MAX( ABS( H( K, K ) ),
        !           236:      $              ABS( H( K-1, K-1 )-H( K, K ) ) )
        !           237:                BB = MIN( ABS( H( K, K ) ),
        !           238:      $              ABS( H( K-1, K-1 )-H( K, K ) ) )
        !           239:                S = AA + AB
        !           240:                IF( BA*( AB / S ).LE.MAX( SMLNUM,
        !           241:      $             ULP*( BB*( AA / S ) ) ) )GO TO 40
        !           242:             END IF
        !           243:    30    CONTINUE
        !           244:    40    CONTINUE
        !           245:          L = K
        !           246:          IF( L.GT.ILO ) THEN
        !           247: *
        !           248: *           H(L,L-1) is negligible
        !           249: *
        !           250:             H( L, L-1 ) = ZERO
        !           251:          END IF
        !           252: *
        !           253: *        Exit from loop if a submatrix of order 1 or 2 has split off.
        !           254: *
        !           255:          IF( L.GE.I-1 )
        !           256:      $      GO TO 150
        !           257: *
        !           258: *        Now the active submatrix is in rows and columns L to I. If
        !           259: *        eigenvalues only are being computed, only the active submatrix
        !           260: *        need be transformed.
        !           261: *
        !           262:          IF( .NOT.WANTT ) THEN
        !           263:             I1 = L
        !           264:             I2 = I
        !           265:          END IF
        !           266: *
        !           267:          IF( ITS.EQ.10 ) THEN
        !           268: *
        !           269: *           Exceptional shift.
        !           270: *
        !           271:             S = ABS( H( L+1, L ) ) + ABS( H( L+2, L+1 ) )
        !           272:             H11 = DAT1*S + H( L, L )
        !           273:             H12 = DAT2*S
        !           274:             H21 = S
        !           275:             H22 = H11
        !           276:          ELSE IF( ITS.EQ.20 ) THEN
        !           277: *
        !           278: *           Exceptional shift.
        !           279: *
        !           280:             S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
        !           281:             H11 = DAT1*S + H( I, I )
        !           282:             H12 = DAT2*S
        !           283:             H21 = S
        !           284:             H22 = H11
        !           285:          ELSE
        !           286: *
        !           287: *           Prepare to use Francis' double shift
        !           288: *           (i.e. 2nd degree generalized Rayleigh quotient)
        !           289: *
        !           290:             H11 = H( I-1, I-1 )
        !           291:             H21 = H( I, I-1 )
        !           292:             H12 = H( I-1, I )
        !           293:             H22 = H( I, I )
        !           294:          END IF
        !           295:          S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 )
        !           296:          IF( S.EQ.ZERO ) THEN
        !           297:             RT1R = ZERO
        !           298:             RT1I = ZERO
        !           299:             RT2R = ZERO
        !           300:             RT2I = ZERO
        !           301:          ELSE
        !           302:             H11 = H11 / S
        !           303:             H21 = H21 / S
        !           304:             H12 = H12 / S
        !           305:             H22 = H22 / S
        !           306:             TR = ( H11+H22 ) / TWO
        !           307:             DET = ( H11-TR )*( H22-TR ) - H12*H21
        !           308:             RTDISC = SQRT( ABS( DET ) )
        !           309:             IF( DET.GE.ZERO ) THEN
        !           310: *
        !           311: *              ==== complex conjugate shifts ====
        !           312: *
        !           313:                RT1R = TR*S
        !           314:                RT2R = RT1R
        !           315:                RT1I = RTDISC*S
        !           316:                RT2I = -RT1I
        !           317:             ELSE
        !           318: *
        !           319: *              ==== real shifts (use only one of them)  ====
        !           320: *
        !           321:                RT1R = TR + RTDISC
        !           322:                RT2R = TR - RTDISC
        !           323:                IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN
        !           324:                   RT1R = RT1R*S
        !           325:                   RT2R = RT1R
        !           326:                ELSE
        !           327:                   RT2R = RT2R*S
        !           328:                   RT1R = RT2R
        !           329:                END IF
        !           330:                RT1I = ZERO
        !           331:                RT2I = ZERO
        !           332:             END IF
        !           333:          END IF
        !           334: *
        !           335: *        Look for two consecutive small subdiagonal elements.
        !           336: *
        !           337:          DO 50 M = I - 2, L, -1
        !           338: *           Determine the effect of starting the double-shift QR
        !           339: *           iteration at row M, and see if this would make H(M,M-1)
        !           340: *           negligible.  (The following uses scaling to avoid
        !           341: *           overflows and most underflows.)
        !           342: *
        !           343:             H21S = H( M+1, M )
        !           344:             S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S )
        !           345:             H21S = H( M+1, M ) / S
        !           346:             V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )*
        !           347:      $               ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S )
        !           348:             V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R )
        !           349:             V( 3 ) = H21S*H( M+2, M+1 )
        !           350:             S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) )
        !           351:             V( 1 ) = V( 1 ) / S
        !           352:             V( 2 ) = V( 2 ) / S
        !           353:             V( 3 ) = V( 3 ) / S
        !           354:             IF( M.EQ.L )
        !           355:      $         GO TO 60
        !           356:             IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE.
        !           357:      $          ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M,
        !           358:      $          M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60
        !           359:    50    CONTINUE
        !           360:    60    CONTINUE
        !           361: *
        !           362: *        Double-shift QR step
        !           363: *
        !           364:          DO 130 K = M, I - 1
        !           365: *
        !           366: *           The first iteration of this loop determines a reflection G
        !           367: *           from the vector V and applies it from left and right to H,
        !           368: *           thus creating a nonzero bulge below the subdiagonal.
        !           369: *
        !           370: *           Each subsequent iteration determines a reflection G to
        !           371: *           restore the Hessenberg form in the (K-1)th column, and thus
        !           372: *           chases the bulge one step toward the bottom of the active
        !           373: *           submatrix. NR is the order of G.
        !           374: *
        !           375:             NR = MIN( 3, I-K+1 )
        !           376:             IF( K.GT.M )
        !           377:      $         CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
        !           378:             CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
        !           379:             IF( K.GT.M ) THEN
        !           380:                H( K, K-1 ) = V( 1 )
        !           381:                H( K+1, K-1 ) = ZERO
        !           382:                IF( K.LT.I-1 )
        !           383:      $            H( K+2, K-1 ) = ZERO
        !           384:             ELSE IF( M.GT.L ) THEN
        !           385: *               ==== Use the following instead of
        !           386: *               .    H( K, K-1 ) = -H( K, K-1 ) to
        !           387: *               .    avoid a bug when v(2) and v(3)
        !           388: *               .    underflow. ====
        !           389:                H( K, K-1 ) = H( K, K-1 )*( ONE-T1 )
        !           390:             END IF
        !           391:             V2 = V( 2 )
        !           392:             T2 = T1*V2
        !           393:             IF( NR.EQ.3 ) THEN
        !           394:                V3 = V( 3 )
        !           395:                T3 = T1*V3
        !           396: *
        !           397: *              Apply G from the left to transform the rows of the matrix
        !           398: *              in columns K to I2.
        !           399: *
        !           400:                DO 70 J = K, I2
        !           401:                   SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
        !           402:                   H( K, J ) = H( K, J ) - SUM*T1
        !           403:                   H( K+1, J ) = H( K+1, J ) - SUM*T2
        !           404:                   H( K+2, J ) = H( K+2, J ) - SUM*T3
        !           405:    70          CONTINUE
        !           406: *
        !           407: *              Apply G from the right to transform the columns of the
        !           408: *              matrix in rows I1 to min(K+3,I).
        !           409: *
        !           410:                DO 80 J = I1, MIN( K+3, I )
        !           411:                   SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
        !           412:                   H( J, K ) = H( J, K ) - SUM*T1
        !           413:                   H( J, K+1 ) = H( J, K+1 ) - SUM*T2
        !           414:                   H( J, K+2 ) = H( J, K+2 ) - SUM*T3
        !           415:    80          CONTINUE
        !           416: *
        !           417:                IF( WANTZ ) THEN
        !           418: *
        !           419: *                 Accumulate transformations in the matrix Z
        !           420: *
        !           421:                   DO 90 J = ILOZ, IHIZ
        !           422:                      SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
        !           423:                      Z( J, K ) = Z( J, K ) - SUM*T1
        !           424:                      Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
        !           425:                      Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
        !           426:    90             CONTINUE
        !           427:                END IF
        !           428:             ELSE IF( NR.EQ.2 ) THEN
        !           429: *
        !           430: *              Apply G from the left to transform the rows of the matrix
        !           431: *              in columns K to I2.
        !           432: *
        !           433:                DO 100 J = K, I2
        !           434:                   SUM = H( K, J ) + V2*H( K+1, J )
        !           435:                   H( K, J ) = H( K, J ) - SUM*T1
        !           436:                   H( K+1, J ) = H( K+1, J ) - SUM*T2
        !           437:   100          CONTINUE
        !           438: *
        !           439: *              Apply G from the right to transform the columns of the
        !           440: *              matrix in rows I1 to min(K+3,I).
        !           441: *
        !           442:                DO 110 J = I1, I
        !           443:                   SUM = H( J, K ) + V2*H( J, K+1 )
        !           444:                   H( J, K ) = H( J, K ) - SUM*T1
        !           445:                   H( J, K+1 ) = H( J, K+1 ) - SUM*T2
        !           446:   110          CONTINUE
        !           447: *
        !           448:                IF( WANTZ ) THEN
        !           449: *
        !           450: *                 Accumulate transformations in the matrix Z
        !           451: *
        !           452:                   DO 120 J = ILOZ, IHIZ
        !           453:                      SUM = Z( J, K ) + V2*Z( J, K+1 )
        !           454:                      Z( J, K ) = Z( J, K ) - SUM*T1
        !           455:                      Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
        !           456:   120             CONTINUE
        !           457:                END IF
        !           458:             END IF
        !           459:   130    CONTINUE
        !           460: *
        !           461:   140 CONTINUE
        !           462: *
        !           463: *     Failure to converge in remaining number of iterations
        !           464: *
        !           465:       INFO = I
        !           466:       RETURN
        !           467: *
        !           468:   150 CONTINUE
        !           469: *
        !           470:       IF( L.EQ.I ) THEN
        !           471: *
        !           472: *        H(I,I-1) is negligible: one eigenvalue has converged.
        !           473: *
        !           474:          WR( I ) = H( I, I )
        !           475:          WI( I ) = ZERO
        !           476:       ELSE IF( L.EQ.I-1 ) THEN
        !           477: *
        !           478: *        H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
        !           479: *
        !           480: *        Transform the 2-by-2 submatrix to standard Schur form,
        !           481: *        and compute and store the eigenvalues.
        !           482: *
        !           483:          CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
        !           484:      $                H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
        !           485:      $                CS, SN )
        !           486: *
        !           487:          IF( WANTT ) THEN
        !           488: *
        !           489: *           Apply the transformation to the rest of H.
        !           490: *
        !           491:             IF( I2.GT.I )
        !           492:      $         CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
        !           493:      $                    CS, SN )
        !           494:             CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
        !           495:          END IF
        !           496:          IF( WANTZ ) THEN
        !           497: *
        !           498: *           Apply the transformation to Z.
        !           499: *
        !           500:             CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
        !           501:          END IF
        !           502:       END IF
        !           503: *
        !           504: *     return to start of the main loop with new value of I.
        !           505: *
        !           506:       I = L - 1
        !           507:       GO TO 20
        !           508: *
        !           509:   160 CONTINUE
        !           510:       RETURN
        !           511: *
        !           512: *     End of DLAHQR
        !           513: *
        !           514:       END

CVSweb interface <joel.bertrand@systella.fr>