File:  [local] / rpl / lapack / lapack / dlagv2.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:17 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
    2:      $                   CSR, SNR )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     June 2010
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            LDA, LDB
   11:       DOUBLE PRECISION   CSL, CSR, SNL, SNR
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
   15:      $                   B( LDB, * ), BETA( 2 )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
   22: *  matrix pencil (A,B) where B is upper triangular. This routine
   23: *  computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
   24: *  SNR such that
   25: *
   26: *  1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
   27: *     types), then
   28: *
   29: *     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
   30: *     [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
   31: *
   32: *     [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
   33: *     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],
   34: *
   35: *  2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
   36: *     then
   37: *
   38: *     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
   39: *     [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
   40: *
   41: *     [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
   42: *     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]
   43: *
   44: *     where b11 >= b22 > 0.
   45: *
   46: *
   47: *  Arguments
   48: *  =========
   49: *
   50: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, 2)
   51: *          On entry, the 2 x 2 matrix A.
   52: *          On exit, A is overwritten by the ``A-part'' of the
   53: *          generalized Schur form.
   54: *
   55: *  LDA     (input) INTEGER
   56: *          THe leading dimension of the array A.  LDA >= 2.
   57: *
   58: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, 2)
   59: *          On entry, the upper triangular 2 x 2 matrix B.
   60: *          On exit, B is overwritten by the ``B-part'' of the
   61: *          generalized Schur form.
   62: *
   63: *  LDB     (input) INTEGER
   64: *          THe leading dimension of the array B.  LDB >= 2.
   65: *
   66: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (2)
   67: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (2)
   68: *  BETA    (output) DOUBLE PRECISION array, dimension (2)
   69: *          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
   70: *          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may
   71: *          be zero.
   72: *
   73: *  CSL     (output) DOUBLE PRECISION
   74: *          The cosine of the left rotation matrix.
   75: *
   76: *  SNL     (output) DOUBLE PRECISION
   77: *          The sine of the left rotation matrix.
   78: *
   79: *  CSR     (output) DOUBLE PRECISION
   80: *          The cosine of the right rotation matrix.
   81: *
   82: *  SNR     (output) DOUBLE PRECISION
   83: *          The sine of the right rotation matrix.
   84: *
   85: *  Further Details
   86: *  ===============
   87: *
   88: *  Based on contributions by
   89: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
   90: *
   91: *  =====================================================================
   92: *
   93: *     .. Parameters ..
   94:       DOUBLE PRECISION   ZERO, ONE
   95:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
   96: *     ..
   97: *     .. Local Scalars ..
   98:       DOUBLE PRECISION   ANORM, ASCALE, BNORM, BSCALE, H1, H2, H3, QQ,
   99:      $                   R, RR, SAFMIN, SCALE1, SCALE2, T, ULP, WI, WR1,
  100:      $                   WR2
  101: *     ..
  102: *     .. External Subroutines ..
  103:       EXTERNAL           DLAG2, DLARTG, DLASV2, DROT
  104: *     ..
  105: *     .. External Functions ..
  106:       DOUBLE PRECISION   DLAMCH, DLAPY2
  107:       EXTERNAL           DLAMCH, DLAPY2
  108: *     ..
  109: *     .. Intrinsic Functions ..
  110:       INTRINSIC          ABS, MAX
  111: *     ..
  112: *     .. Executable Statements ..
  113: *
  114:       SAFMIN = DLAMCH( 'S' )
  115:       ULP = DLAMCH( 'P' )
  116: *
  117: *     Scale A
  118: *
  119:       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
  120:      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
  121:       ASCALE = ONE / ANORM
  122:       A( 1, 1 ) = ASCALE*A( 1, 1 )
  123:       A( 1, 2 ) = ASCALE*A( 1, 2 )
  124:       A( 2, 1 ) = ASCALE*A( 2, 1 )
  125:       A( 2, 2 ) = ASCALE*A( 2, 2 )
  126: *
  127: *     Scale B
  128: *
  129:       BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
  130:      $        SAFMIN )
  131:       BSCALE = ONE / BNORM
  132:       B( 1, 1 ) = BSCALE*B( 1, 1 )
  133:       B( 1, 2 ) = BSCALE*B( 1, 2 )
  134:       B( 2, 2 ) = BSCALE*B( 2, 2 )
  135: *
  136: *     Check if A can be deflated
  137: *
  138:       IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN
  139:          CSL = ONE
  140:          SNL = ZERO
  141:          CSR = ONE
  142:          SNR = ZERO
  143:          A( 2, 1 ) = ZERO
  144:          B( 2, 1 ) = ZERO
  145:          WI = ZERO
  146: *
  147: *     Check if B is singular
  148: *
  149:       ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN
  150:          CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
  151:          CSR = ONE
  152:          SNR = ZERO
  153:          CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
  154:          CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
  155:          A( 2, 1 ) = ZERO
  156:          B( 1, 1 ) = ZERO
  157:          B( 2, 1 ) = ZERO
  158:          WI = ZERO
  159: *
  160:       ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN
  161:          CALL DLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T )
  162:          SNR = -SNR
  163:          CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
  164:          CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
  165:          CSL = ONE
  166:          SNL = ZERO
  167:          A( 2, 1 ) = ZERO
  168:          B( 2, 1 ) = ZERO
  169:          B( 2, 2 ) = ZERO
  170:          WI = ZERO
  171: *
  172:       ELSE
  173: *
  174: *        B is nonsingular, first compute the eigenvalues of (A,B)
  175: *
  176:          CALL DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
  177:      $               WI )
  178: *
  179:          IF( WI.EQ.ZERO ) THEN
  180: *
  181: *           two real eigenvalues, compute s*A-w*B
  182: *
  183:             H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 )
  184:             H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 )
  185:             H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 )
  186: *
  187:             RR = DLAPY2( H1, H2 )
  188:             QQ = DLAPY2( SCALE1*A( 2, 1 ), H3 )
  189: *
  190:             IF( RR.GT.QQ ) THEN
  191: *
  192: *              find right rotation matrix to zero 1,1 element of
  193: *              (sA - wB)
  194: *
  195:                CALL DLARTG( H2, H1, CSR, SNR, T )
  196: *
  197:             ELSE
  198: *
  199: *              find right rotation matrix to zero 2,1 element of
  200: *              (sA - wB)
  201: *
  202:                CALL DLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T )
  203: *
  204:             END IF
  205: *
  206:             SNR = -SNR
  207:             CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
  208:             CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
  209: *
  210: *           compute inf norms of A and B
  211: *
  212:             H1 = MAX( ABS( A( 1, 1 ) )+ABS( A( 1, 2 ) ),
  213:      $           ABS( A( 2, 1 ) )+ABS( A( 2, 2 ) ) )
  214:             H2 = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
  215:      $           ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
  216: *
  217:             IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
  218: *
  219: *              find left rotation matrix Q to zero out B(2,1)
  220: *
  221:                CALL DLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R )
  222: *
  223:             ELSE
  224: *
  225: *              find left rotation matrix Q to zero out A(2,1)
  226: *
  227:                CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
  228: *
  229:             END IF
  230: *
  231:             CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
  232:             CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
  233: *
  234:             A( 2, 1 ) = ZERO
  235:             B( 2, 1 ) = ZERO
  236: *
  237:          ELSE
  238: *
  239: *           a pair of complex conjugate eigenvalues
  240: *           first compute the SVD of the matrix B
  241: *
  242:             CALL DLASV2( B( 1, 1 ), B( 1, 2 ), B( 2, 2 ), R, T, SNR,
  243:      $                   CSR, SNL, CSL )
  244: *
  245: *           Form (A,B) := Q(A,B)Z' where Q is left rotation matrix and
  246: *           Z is right rotation matrix computed from DLASV2
  247: *
  248:             CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
  249:             CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
  250:             CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
  251:             CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
  252: *
  253:             B( 2, 1 ) = ZERO
  254:             B( 1, 2 ) = ZERO
  255: *
  256:          END IF
  257: *
  258:       END IF
  259: *
  260: *     Unscaling
  261: *
  262:       A( 1, 1 ) = ANORM*A( 1, 1 )
  263:       A( 2, 1 ) = ANORM*A( 2, 1 )
  264:       A( 1, 2 ) = ANORM*A( 1, 2 )
  265:       A( 2, 2 ) = ANORM*A( 2, 2 )
  266:       B( 1, 1 ) = BNORM*B( 1, 1 )
  267:       B( 2, 1 ) = BNORM*B( 2, 1 )
  268:       B( 1, 2 ) = BNORM*B( 1, 2 )
  269:       B( 2, 2 ) = BNORM*B( 2, 2 )
  270: *
  271:       IF( WI.EQ.ZERO ) THEN
  272:          ALPHAR( 1 ) = A( 1, 1 )
  273:          ALPHAR( 2 ) = A( 2, 2 )
  274:          ALPHAI( 1 ) = ZERO
  275:          ALPHAI( 2 ) = ZERO
  276:          BETA( 1 ) = B( 1, 1 )
  277:          BETA( 2 ) = B( 2, 2 )
  278:       ELSE
  279:          ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM
  280:          ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM
  281:          ALPHAR( 2 ) = ALPHAR( 1 )
  282:          ALPHAI( 2 ) = -ALPHAI( 1 )
  283:          BETA( 1 ) = ONE
  284:          BETA( 2 ) = ONE
  285:       END IF
  286: *
  287:       RETURN
  288: *
  289: *     End of DLAGV2
  290: *
  291:       END

CVSweb interface <joel.bertrand@systella.fr>