File:  [local] / rpl / lapack / lapack / dlagv2.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:16 2010 UTC (14 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
    2:      $                   CSR, SNR )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            LDA, LDB
   11:       DOUBLE PRECISION   CSL, CSR, SNL, SNR
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
   15:      $                   B( LDB, * ), BETA( 2 )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
   22: *  matrix pencil (A,B) where B is upper triangular. This routine
   23: *  computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
   24: *  SNR such that
   25: *
   26: *  1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
   27: *     types), then
   28: *
   29: *     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
   30: *     [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
   31: *
   32: *     [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
   33: *     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],
   34: *
   35: *  2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
   36: *     then
   37: *
   38: *     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
   39: *     [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
   40: *
   41: *     [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
   42: *     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]
   43: *
   44: *     where b11 >= b22 > 0.
   45: *
   46: *
   47: *  Arguments
   48: *  =========
   49: *
   50: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, 2)
   51: *          On entry, the 2 x 2 matrix A.
   52: *          On exit, A is overwritten by the ``A-part'' of the
   53: *          generalized Schur form.
   54: *
   55: *  LDA     (input) INTEGER
   56: *          THe leading dimension of the array A.  LDA >= 2.
   57: *
   58: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, 2)
   59: *          On entry, the upper triangular 2 x 2 matrix B.
   60: *          On exit, B is overwritten by the ``B-part'' of the
   61: *          generalized Schur form.
   62: *
   63: *  LDB     (input) INTEGER
   64: *          THe leading dimension of the array B.  LDB >= 2.
   65: *
   66: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (2)
   67: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (2)
   68: *  BETA    (output) DOUBLE PRECISION array, dimension (2)
   69: *          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
   70: *          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may
   71: *          be zero.
   72: *
   73: *  CSL     (output) DOUBLE PRECISION
   74: *          The cosine of the left rotation matrix.
   75: *
   76: *  SNL     (output) DOUBLE PRECISION
   77: *          The sine of the left rotation matrix.
   78: *
   79: *  CSR     (output) DOUBLE PRECISION
   80: *          The cosine of the right rotation matrix.
   81: *
   82: *  SNR     (output) DOUBLE PRECISION
   83: *          The sine of the right rotation matrix.
   84: *
   85: *  Further Details
   86: *  ===============
   87: *
   88: *  Based on contributions by
   89: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
   90: *
   91: *  =====================================================================
   92: *
   93: *     .. Parameters ..
   94:       DOUBLE PRECISION   ZERO, ONE
   95:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
   96: *     ..
   97: *     .. Local Scalars ..
   98:       DOUBLE PRECISION   ANORM, ASCALE, BNORM, BSCALE, H1, H2, H3, QQ,
   99:      $                   R, RR, SAFMIN, SCALE1, SCALE2, T, ULP, WI, WR1,
  100:      $                   WR2
  101: *     ..
  102: *     .. External Subroutines ..
  103:       EXTERNAL           DLAG2, DLARTG, DLASV2, DROT
  104: *     ..
  105: *     .. External Functions ..
  106:       DOUBLE PRECISION   DLAMCH, DLAPY2
  107:       EXTERNAL           DLAMCH, DLAPY2
  108: *     ..
  109: *     .. Intrinsic Functions ..
  110:       INTRINSIC          ABS, MAX
  111: *     ..
  112: *     .. Executable Statements ..
  113: *
  114:       SAFMIN = DLAMCH( 'S' )
  115:       ULP = DLAMCH( 'P' )
  116: *
  117: *     Scale A
  118: *
  119:       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
  120:      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
  121:       ASCALE = ONE / ANORM
  122:       A( 1, 1 ) = ASCALE*A( 1, 1 )
  123:       A( 1, 2 ) = ASCALE*A( 1, 2 )
  124:       A( 2, 1 ) = ASCALE*A( 2, 1 )
  125:       A( 2, 2 ) = ASCALE*A( 2, 2 )
  126: *
  127: *     Scale B
  128: *
  129:       BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
  130:      $        SAFMIN )
  131:       BSCALE = ONE / BNORM
  132:       B( 1, 1 ) = BSCALE*B( 1, 1 )
  133:       B( 1, 2 ) = BSCALE*B( 1, 2 )
  134:       B( 2, 2 ) = BSCALE*B( 2, 2 )
  135: *
  136: *     Check if A can be deflated
  137: *
  138:       IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN
  139:          CSL = ONE
  140:          SNL = ZERO
  141:          CSR = ONE
  142:          SNR = ZERO
  143:          A( 2, 1 ) = ZERO
  144:          B( 2, 1 ) = ZERO
  145: *
  146: *     Check if B is singular
  147: *
  148:       ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN
  149:          CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
  150:          CSR = ONE
  151:          SNR = ZERO
  152:          CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
  153:          CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
  154:          A( 2, 1 ) = ZERO
  155:          B( 1, 1 ) = ZERO
  156:          B( 2, 1 ) = ZERO
  157: *
  158:       ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN
  159:          CALL DLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T )
  160:          SNR = -SNR
  161:          CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
  162:          CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
  163:          CSL = ONE
  164:          SNL = ZERO
  165:          A( 2, 1 ) = ZERO
  166:          B( 2, 1 ) = ZERO
  167:          B( 2, 2 ) = ZERO
  168: *
  169:       ELSE
  170: *
  171: *        B is nonsingular, first compute the eigenvalues of (A,B)
  172: *
  173:          CALL DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
  174:      $               WI )
  175: *
  176:          IF( WI.EQ.ZERO ) THEN
  177: *
  178: *           two real eigenvalues, compute s*A-w*B
  179: *
  180:             H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 )
  181:             H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 )
  182:             H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 )
  183: *
  184:             RR = DLAPY2( H1, H2 )
  185:             QQ = DLAPY2( SCALE1*A( 2, 1 ), H3 )
  186: *
  187:             IF( RR.GT.QQ ) THEN
  188: *
  189: *              find right rotation matrix to zero 1,1 element of
  190: *              (sA - wB)
  191: *
  192:                CALL DLARTG( H2, H1, CSR, SNR, T )
  193: *
  194:             ELSE
  195: *
  196: *              find right rotation matrix to zero 2,1 element of
  197: *              (sA - wB)
  198: *
  199:                CALL DLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T )
  200: *
  201:             END IF
  202: *
  203:             SNR = -SNR
  204:             CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
  205:             CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
  206: *
  207: *           compute inf norms of A and B
  208: *
  209:             H1 = MAX( ABS( A( 1, 1 ) )+ABS( A( 1, 2 ) ),
  210:      $           ABS( A( 2, 1 ) )+ABS( A( 2, 2 ) ) )
  211:             H2 = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
  212:      $           ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
  213: *
  214:             IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
  215: *
  216: *              find left rotation matrix Q to zero out B(2,1)
  217: *
  218:                CALL DLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R )
  219: *
  220:             ELSE
  221: *
  222: *              find left rotation matrix Q to zero out A(2,1)
  223: *
  224:                CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
  225: *
  226:             END IF
  227: *
  228:             CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
  229:             CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
  230: *
  231:             A( 2, 1 ) = ZERO
  232:             B( 2, 1 ) = ZERO
  233: *
  234:          ELSE
  235: *
  236: *           a pair of complex conjugate eigenvalues
  237: *           first compute the SVD of the matrix B
  238: *
  239:             CALL DLASV2( B( 1, 1 ), B( 1, 2 ), B( 2, 2 ), R, T, SNR,
  240:      $                   CSR, SNL, CSL )
  241: *
  242: *           Form (A,B) := Q(A,B)Z' where Q is left rotation matrix and
  243: *           Z is right rotation matrix computed from DLASV2
  244: *
  245:             CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
  246:             CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
  247:             CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
  248:             CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
  249: *
  250:             B( 2, 1 ) = ZERO
  251:             B( 1, 2 ) = ZERO
  252: *
  253:          END IF
  254: *
  255:       END IF
  256: *
  257: *     Unscaling
  258: *
  259:       A( 1, 1 ) = ANORM*A( 1, 1 )
  260:       A( 2, 1 ) = ANORM*A( 2, 1 )
  261:       A( 1, 2 ) = ANORM*A( 1, 2 )
  262:       A( 2, 2 ) = ANORM*A( 2, 2 )
  263:       B( 1, 1 ) = BNORM*B( 1, 1 )
  264:       B( 2, 1 ) = BNORM*B( 2, 1 )
  265:       B( 1, 2 ) = BNORM*B( 1, 2 )
  266:       B( 2, 2 ) = BNORM*B( 2, 2 )
  267: *
  268:       IF( WI.EQ.ZERO ) THEN
  269:          ALPHAR( 1 ) = A( 1, 1 )
  270:          ALPHAR( 2 ) = A( 2, 2 )
  271:          ALPHAI( 1 ) = ZERO
  272:          ALPHAI( 2 ) = ZERO
  273:          BETA( 1 ) = B( 1, 1 )
  274:          BETA( 2 ) = B( 2, 2 )
  275:       ELSE
  276:          ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM
  277:          ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM
  278:          ALPHAR( 2 ) = ALPHAR( 1 )
  279:          ALPHAI( 2 ) = -ALPHAI( 1 )
  280:          BETA( 1 ) = ONE
  281:          BETA( 2 ) = ONE
  282:       END IF
  283: *
  284:       RETURN
  285: *
  286: *     End of DLAGV2
  287: *
  288:       END

CVSweb interface <joel.bertrand@systella.fr>