File:  [local] / rpl / lapack / lapack / dlagts.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:54 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAGTS solves the system of equations (T-λI)x = y or (T-λI)Tx = y,where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by slagtf.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAGTS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagts.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagts.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagts.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, JOB, N
   25: *       DOUBLE PRECISION   TOL
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IN( * )
   29: *       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * ), Y( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLAGTS may be used to solve one of the systems of equations
   39: *>
   40: *>    (T - lambda*I)*x = y   or   (T - lambda*I)**T*x = y,
   41: *>
   42: *> where T is an n by n tridiagonal matrix, for x, following the
   43: *> factorization of (T - lambda*I) as
   44: *>
   45: *>    (T - lambda*I) = P*L*U ,
   46: *>
   47: *> by routine DLAGTF. The choice of equation to be solved is
   48: *> controlled by the argument JOB, and in each case there is an option
   49: *> to perturb zero or very small diagonal elements of U, this option
   50: *> being intended for use in applications such as inverse iteration.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] JOB
   57: *> \verbatim
   58: *>          JOB is INTEGER
   59: *>          Specifies the job to be performed by DLAGTS as follows:
   60: *>          =  1: The equations  (T - lambda*I)x = y  are to be solved,
   61: *>                but diagonal elements of U are not to be perturbed.
   62: *>          = -1: The equations  (T - lambda*I)x = y  are to be solved
   63: *>                and, if overflow would otherwise occur, the diagonal
   64: *>                elements of U are to be perturbed. See argument TOL
   65: *>                below.
   66: *>          =  2: The equations  (T - lambda*I)**Tx = y  are to be solved,
   67: *>                but diagonal elements of U are not to be perturbed.
   68: *>          = -2: The equations  (T - lambda*I)**Tx = y  are to be solved
   69: *>                and, if overflow would otherwise occur, the diagonal
   70: *>                elements of U are to be perturbed. See argument TOL
   71: *>                below.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>          The order of the matrix T.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] A
   81: *> \verbatim
   82: *>          A is DOUBLE PRECISION array, dimension (N)
   83: *>          On entry, A must contain the diagonal elements of U as
   84: *>          returned from DLAGTF.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] B
   88: *> \verbatim
   89: *>          B is DOUBLE PRECISION array, dimension (N-1)
   90: *>          On entry, B must contain the first super-diagonal elements of
   91: *>          U as returned from DLAGTF.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] C
   95: *> \verbatim
   96: *>          C is DOUBLE PRECISION array, dimension (N-1)
   97: *>          On entry, C must contain the sub-diagonal elements of L as
   98: *>          returned from DLAGTF.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] D
  102: *> \verbatim
  103: *>          D is DOUBLE PRECISION array, dimension (N-2)
  104: *>          On entry, D must contain the second super-diagonal elements
  105: *>          of U as returned from DLAGTF.
  106: *> \endverbatim
  107: *>
  108: *> \param[in] IN
  109: *> \verbatim
  110: *>          IN is INTEGER array, dimension (N)
  111: *>          On entry, IN must contain details of the matrix P as returned
  112: *>          from DLAGTF.
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] Y
  116: *> \verbatim
  117: *>          Y is DOUBLE PRECISION array, dimension (N)
  118: *>          On entry, the right hand side vector y.
  119: *>          On exit, Y is overwritten by the solution vector x.
  120: *> \endverbatim
  121: *>
  122: *> \param[in,out] TOL
  123: *> \verbatim
  124: *>          TOL is DOUBLE PRECISION
  125: *>          On entry, with  JOB < 0, TOL should be the minimum
  126: *>          perturbation to be made to very small diagonal elements of U.
  127: *>          TOL should normally be chosen as about eps*norm(U), where eps
  128: *>          is the relative machine precision, but if TOL is supplied as
  129: *>          non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
  130: *>          If  JOB > 0  then TOL is not referenced.
  131: *>
  132: *>          On exit, TOL is changed as described above, only if TOL is
  133: *>          non-positive on entry. Otherwise TOL is unchanged.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] INFO
  137: *> \verbatim
  138: *>          INFO is INTEGER
  139: *>          = 0:  successful exit
  140: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  141: *>          > 0:  overflow would occur when computing the INFO(th)
  142: *>                element of the solution vector x. This can only occur
  143: *>                when JOB is supplied as positive and either means
  144: *>                that a diagonal element of U is very small, or that
  145: *>                the elements of the right-hand side vector y are very
  146: *>                large.
  147: *> \endverbatim
  148: *
  149: *  Authors:
  150: *  ========
  151: *
  152: *> \author Univ. of Tennessee
  153: *> \author Univ. of California Berkeley
  154: *> \author Univ. of Colorado Denver
  155: *> \author NAG Ltd.
  156: *
  157: *> \ingroup OTHERauxiliary
  158: *
  159: *  =====================================================================
  160:       SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
  161: *
  162: *  -- LAPACK auxiliary routine --
  163: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  164: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165: *
  166: *     .. Scalar Arguments ..
  167:       INTEGER            INFO, JOB, N
  168:       DOUBLE PRECISION   TOL
  169: *     ..
  170: *     .. Array Arguments ..
  171:       INTEGER            IN( * )
  172:       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * ), Y( * )
  173: *     ..
  174: *
  175: *  =====================================================================
  176: *
  177: *     .. Parameters ..
  178:       DOUBLE PRECISION   ONE, ZERO
  179:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  180: *     ..
  181: *     .. Local Scalars ..
  182:       INTEGER            K
  183:       DOUBLE PRECISION   ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP
  184: *     ..
  185: *     .. Intrinsic Functions ..
  186:       INTRINSIC          ABS, MAX, SIGN
  187: *     ..
  188: *     .. External Functions ..
  189:       DOUBLE PRECISION   DLAMCH
  190:       EXTERNAL           DLAMCH
  191: *     ..
  192: *     .. External Subroutines ..
  193:       EXTERNAL           XERBLA
  194: *     ..
  195: *     .. Executable Statements ..
  196: *
  197:       INFO = 0
  198:       IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN
  199:          INFO = -1
  200:       ELSE IF( N.LT.0 ) THEN
  201:          INFO = -2
  202:       END IF
  203:       IF( INFO.NE.0 ) THEN
  204:          CALL XERBLA( 'DLAGTS', -INFO )
  205:          RETURN
  206:       END IF
  207: *
  208:       IF( N.EQ.0 )
  209:      $   RETURN
  210: *
  211:       EPS = DLAMCH( 'Epsilon' )
  212:       SFMIN = DLAMCH( 'Safe minimum' )
  213:       BIGNUM = ONE / SFMIN
  214: *
  215:       IF( JOB.LT.0 ) THEN
  216:          IF( TOL.LE.ZERO ) THEN
  217:             TOL = ABS( A( 1 ) )
  218:             IF( N.GT.1 )
  219:      $         TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) )
  220:             DO 10 K = 3, N
  221:                TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ),
  222:      $               ABS( D( K-2 ) ) )
  223:    10       CONTINUE
  224:             TOL = TOL*EPS
  225:             IF( TOL.EQ.ZERO )
  226:      $         TOL = EPS
  227:          END IF
  228:       END IF
  229: *
  230:       IF( ABS( JOB ).EQ.1 ) THEN
  231:          DO 20 K = 2, N
  232:             IF( IN( K-1 ).EQ.0 ) THEN
  233:                Y( K ) = Y( K ) - C( K-1 )*Y( K-1 )
  234:             ELSE
  235:                TEMP = Y( K-1 )
  236:                Y( K-1 ) = Y( K )
  237:                Y( K ) = TEMP - C( K-1 )*Y( K )
  238:             END IF
  239:    20    CONTINUE
  240:          IF( JOB.EQ.1 ) THEN
  241:             DO 30 K = N, 1, -1
  242:                IF( K.LE.N-2 ) THEN
  243:                   TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
  244:                ELSE IF( K.EQ.N-1 ) THEN
  245:                   TEMP = Y( K ) - B( K )*Y( K+1 )
  246:                ELSE
  247:                   TEMP = Y( K )
  248:                END IF
  249:                AK = A( K )
  250:                ABSAK = ABS( AK )
  251:                IF( ABSAK.LT.ONE ) THEN
  252:                   IF( ABSAK.LT.SFMIN ) THEN
  253:                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
  254:      $                    THEN
  255:                         INFO = K
  256:                         RETURN
  257:                      ELSE
  258:                         TEMP = TEMP*BIGNUM
  259:                         AK = AK*BIGNUM
  260:                      END IF
  261:                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
  262:                      INFO = K
  263:                      RETURN
  264:                   END IF
  265:                END IF
  266:                Y( K ) = TEMP / AK
  267:    30       CONTINUE
  268:          ELSE
  269:             DO 50 K = N, 1, -1
  270:                IF( K.LE.N-2 ) THEN
  271:                   TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
  272:                ELSE IF( K.EQ.N-1 ) THEN
  273:                   TEMP = Y( K ) - B( K )*Y( K+1 )
  274:                ELSE
  275:                   TEMP = Y( K )
  276:                END IF
  277:                AK = A( K )
  278:                PERT = SIGN( TOL, AK )
  279:    40          CONTINUE
  280:                ABSAK = ABS( AK )
  281:                IF( ABSAK.LT.ONE ) THEN
  282:                   IF( ABSAK.LT.SFMIN ) THEN
  283:                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
  284:      $                    THEN
  285:                         AK = AK + PERT
  286:                         PERT = 2*PERT
  287:                         GO TO 40
  288:                      ELSE
  289:                         TEMP = TEMP*BIGNUM
  290:                         AK = AK*BIGNUM
  291:                      END IF
  292:                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
  293:                      AK = AK + PERT
  294:                      PERT = 2*PERT
  295:                      GO TO 40
  296:                   END IF
  297:                END IF
  298:                Y( K ) = TEMP / AK
  299:    50       CONTINUE
  300:          END IF
  301:       ELSE
  302: *
  303: *        Come to here if  JOB = 2 or -2
  304: *
  305:          IF( JOB.EQ.2 ) THEN
  306:             DO 60 K = 1, N
  307:                IF( K.GE.3 ) THEN
  308:                   TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
  309:                ELSE IF( K.EQ.2 ) THEN
  310:                   TEMP = Y( K ) - B( K-1 )*Y( K-1 )
  311:                ELSE
  312:                   TEMP = Y( K )
  313:                END IF
  314:                AK = A( K )
  315:                ABSAK = ABS( AK )
  316:                IF( ABSAK.LT.ONE ) THEN
  317:                   IF( ABSAK.LT.SFMIN ) THEN
  318:                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
  319:      $                    THEN
  320:                         INFO = K
  321:                         RETURN
  322:                      ELSE
  323:                         TEMP = TEMP*BIGNUM
  324:                         AK = AK*BIGNUM
  325:                      END IF
  326:                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
  327:                      INFO = K
  328:                      RETURN
  329:                   END IF
  330:                END IF
  331:                Y( K ) = TEMP / AK
  332:    60       CONTINUE
  333:          ELSE
  334:             DO 80 K = 1, N
  335:                IF( K.GE.3 ) THEN
  336:                   TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
  337:                ELSE IF( K.EQ.2 ) THEN
  338:                   TEMP = Y( K ) - B( K-1 )*Y( K-1 )
  339:                ELSE
  340:                   TEMP = Y( K )
  341:                END IF
  342:                AK = A( K )
  343:                PERT = SIGN( TOL, AK )
  344:    70          CONTINUE
  345:                ABSAK = ABS( AK )
  346:                IF( ABSAK.LT.ONE ) THEN
  347:                   IF( ABSAK.LT.SFMIN ) THEN
  348:                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
  349:      $                    THEN
  350:                         AK = AK + PERT
  351:                         PERT = 2*PERT
  352:                         GO TO 70
  353:                      ELSE
  354:                         TEMP = TEMP*BIGNUM
  355:                         AK = AK*BIGNUM
  356:                      END IF
  357:                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
  358:                      AK = AK + PERT
  359:                      PERT = 2*PERT
  360:                      GO TO 70
  361:                   END IF
  362:                END IF
  363:                Y( K ) = TEMP / AK
  364:    80       CONTINUE
  365:          END IF
  366: *
  367:          DO 90 K = N, 2, -1
  368:             IF( IN( K-1 ).EQ.0 ) THEN
  369:                Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K )
  370:             ELSE
  371:                TEMP = Y( K-1 )
  372:                Y( K-1 ) = Y( K )
  373:                Y( K ) = TEMP - C( K-1 )*Y( K )
  374:             END IF
  375:    90    CONTINUE
  376:       END IF
  377: *
  378: *     End of DLAGTS
  379: *
  380:       END

CVSweb interface <joel.bertrand@systella.fr>