File:  [local] / rpl / lapack / lapack / dlagts.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:39 2010 UTC (14 years, 2 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, JOB, N
   10:       DOUBLE PRECISION   TOL
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IN( * )
   14:       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * ), Y( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DLAGTS may be used to solve one of the systems of equations
   21: *
   22: *     (T - lambda*I)*x = y   or   (T - lambda*I)'*x = y,
   23: *
   24: *  where T is an n by n tridiagonal matrix, for x, following the
   25: *  factorization of (T - lambda*I) as
   26: *
   27: *     (T - lambda*I) = P*L*U ,
   28: *
   29: *  by routine DLAGTF. The choice of equation to be solved is
   30: *  controlled by the argument JOB, and in each case there is an option
   31: *  to perturb zero or very small diagonal elements of U, this option
   32: *  being intended for use in applications such as inverse iteration.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *  JOB     (input) INTEGER
   38: *          Specifies the job to be performed by DLAGTS as follows:
   39: *          =  1: The equations  (T - lambda*I)x = y  are to be solved,
   40: *                but diagonal elements of U are not to be perturbed.
   41: *          = -1: The equations  (T - lambda*I)x = y  are to be solved
   42: *                and, if overflow would otherwise occur, the diagonal
   43: *                elements of U are to be perturbed. See argument TOL
   44: *                below.
   45: *          =  2: The equations  (T - lambda*I)'x = y  are to be solved,
   46: *                but diagonal elements of U are not to be perturbed.
   47: *          = -2: The equations  (T - lambda*I)'x = y  are to be solved
   48: *                and, if overflow would otherwise occur, the diagonal
   49: *                elements of U are to be perturbed. See argument TOL
   50: *                below.
   51: *
   52: *  N       (input) INTEGER
   53: *          The order of the matrix T.
   54: *
   55: *  A       (input) DOUBLE PRECISION array, dimension (N)
   56: *          On entry, A must contain the diagonal elements of U as
   57: *          returned from DLAGTF.
   58: *
   59: *  B       (input) DOUBLE PRECISION array, dimension (N-1)
   60: *          On entry, B must contain the first super-diagonal elements of
   61: *          U as returned from DLAGTF.
   62: *
   63: *  C       (input) DOUBLE PRECISION array, dimension (N-1)
   64: *          On entry, C must contain the sub-diagonal elements of L as
   65: *          returned from DLAGTF.
   66: *
   67: *  D       (input) DOUBLE PRECISION array, dimension (N-2)
   68: *          On entry, D must contain the second super-diagonal elements
   69: *          of U as returned from DLAGTF.
   70: *
   71: *  IN      (input) INTEGER array, dimension (N)
   72: *          On entry, IN must contain details of the matrix P as returned
   73: *          from DLAGTF.
   74: *
   75: *  Y       (input/output) DOUBLE PRECISION array, dimension (N)
   76: *          On entry, the right hand side vector y.
   77: *          On exit, Y is overwritten by the solution vector x.
   78: *
   79: *  TOL     (input/output) DOUBLE PRECISION
   80: *          On entry, with  JOB .lt. 0, TOL should be the minimum
   81: *          perturbation to be made to very small diagonal elements of U.
   82: *          TOL should normally be chosen as about eps*norm(U), where eps
   83: *          is the relative machine precision, but if TOL is supplied as
   84: *          non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
   85: *          If  JOB .gt. 0  then TOL is not referenced.
   86: *
   87: *          On exit, TOL is changed as described above, only if TOL is
   88: *          non-positive on entry. Otherwise TOL is unchanged.
   89: *
   90: *  INFO    (output) INTEGER
   91: *          = 0   : successful exit
   92: *          .lt. 0: if INFO = -i, the i-th argument had an illegal value
   93: *          .gt. 0: overflow would occur when computing the INFO(th)
   94: *                  element of the solution vector x. This can only occur
   95: *                  when JOB is supplied as positive and either means
   96: *                  that a diagonal element of U is very small, or that
   97: *                  the elements of the right-hand side vector y are very
   98: *                  large.
   99: *
  100: *  =====================================================================
  101: *
  102: *     .. Parameters ..
  103:       DOUBLE PRECISION   ONE, ZERO
  104:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  105: *     ..
  106: *     .. Local Scalars ..
  107:       INTEGER            K
  108:       DOUBLE PRECISION   ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP
  109: *     ..
  110: *     .. Intrinsic Functions ..
  111:       INTRINSIC          ABS, MAX, SIGN
  112: *     ..
  113: *     .. External Functions ..
  114:       DOUBLE PRECISION   DLAMCH
  115:       EXTERNAL           DLAMCH
  116: *     ..
  117: *     .. External Subroutines ..
  118:       EXTERNAL           XERBLA
  119: *     ..
  120: *     .. Executable Statements ..
  121: *
  122:       INFO = 0
  123:       IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN
  124:          INFO = -1
  125:       ELSE IF( N.LT.0 ) THEN
  126:          INFO = -2
  127:       END IF
  128:       IF( INFO.NE.0 ) THEN
  129:          CALL XERBLA( 'DLAGTS', -INFO )
  130:          RETURN
  131:       END IF
  132: *
  133:       IF( N.EQ.0 )
  134:      $   RETURN
  135: *
  136:       EPS = DLAMCH( 'Epsilon' )
  137:       SFMIN = DLAMCH( 'Safe minimum' )
  138:       BIGNUM = ONE / SFMIN
  139: *
  140:       IF( JOB.LT.0 ) THEN
  141:          IF( TOL.LE.ZERO ) THEN
  142:             TOL = ABS( A( 1 ) )
  143:             IF( N.GT.1 )
  144:      $         TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) )
  145:             DO 10 K = 3, N
  146:                TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ),
  147:      $               ABS( D( K-2 ) ) )
  148:    10       CONTINUE
  149:             TOL = TOL*EPS
  150:             IF( TOL.EQ.ZERO )
  151:      $         TOL = EPS
  152:          END IF
  153:       END IF
  154: *
  155:       IF( ABS( JOB ).EQ.1 ) THEN
  156:          DO 20 K = 2, N
  157:             IF( IN( K-1 ).EQ.0 ) THEN
  158:                Y( K ) = Y( K ) - C( K-1 )*Y( K-1 )
  159:             ELSE
  160:                TEMP = Y( K-1 )
  161:                Y( K-1 ) = Y( K )
  162:                Y( K ) = TEMP - C( K-1 )*Y( K )
  163:             END IF
  164:    20    CONTINUE
  165:          IF( JOB.EQ.1 ) THEN
  166:             DO 30 K = N, 1, -1
  167:                IF( K.LE.N-2 ) THEN
  168:                   TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
  169:                ELSE IF( K.EQ.N-1 ) THEN
  170:                   TEMP = Y( K ) - B( K )*Y( K+1 )
  171:                ELSE
  172:                   TEMP = Y( K )
  173:                END IF
  174:                AK = A( K )
  175:                ABSAK = ABS( AK )
  176:                IF( ABSAK.LT.ONE ) THEN
  177:                   IF( ABSAK.LT.SFMIN ) THEN
  178:                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
  179:      $                    THEN
  180:                         INFO = K
  181:                         RETURN
  182:                      ELSE
  183:                         TEMP = TEMP*BIGNUM
  184:                         AK = AK*BIGNUM
  185:                      END IF
  186:                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
  187:                      INFO = K
  188:                      RETURN
  189:                   END IF
  190:                END IF
  191:                Y( K ) = TEMP / AK
  192:    30       CONTINUE
  193:          ELSE
  194:             DO 50 K = N, 1, -1
  195:                IF( K.LE.N-2 ) THEN
  196:                   TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
  197:                ELSE IF( K.EQ.N-1 ) THEN
  198:                   TEMP = Y( K ) - B( K )*Y( K+1 )
  199:                ELSE
  200:                   TEMP = Y( K )
  201:                END IF
  202:                AK = A( K )
  203:                PERT = SIGN( TOL, AK )
  204:    40          CONTINUE
  205:                ABSAK = ABS( AK )
  206:                IF( ABSAK.LT.ONE ) THEN
  207:                   IF( ABSAK.LT.SFMIN ) THEN
  208:                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
  209:      $                    THEN
  210:                         AK = AK + PERT
  211:                         PERT = 2*PERT
  212:                         GO TO 40
  213:                      ELSE
  214:                         TEMP = TEMP*BIGNUM
  215:                         AK = AK*BIGNUM
  216:                      END IF
  217:                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
  218:                      AK = AK + PERT
  219:                      PERT = 2*PERT
  220:                      GO TO 40
  221:                   END IF
  222:                END IF
  223:                Y( K ) = TEMP / AK
  224:    50       CONTINUE
  225:          END IF
  226:       ELSE
  227: *
  228: *        Come to here if  JOB = 2 or -2
  229: *
  230:          IF( JOB.EQ.2 ) THEN
  231:             DO 60 K = 1, N
  232:                IF( K.GE.3 ) THEN
  233:                   TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
  234:                ELSE IF( K.EQ.2 ) THEN
  235:                   TEMP = Y( K ) - B( K-1 )*Y( K-1 )
  236:                ELSE
  237:                   TEMP = Y( K )
  238:                END IF
  239:                AK = A( K )
  240:                ABSAK = ABS( AK )
  241:                IF( ABSAK.LT.ONE ) THEN
  242:                   IF( ABSAK.LT.SFMIN ) THEN
  243:                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
  244:      $                    THEN
  245:                         INFO = K
  246:                         RETURN
  247:                      ELSE
  248:                         TEMP = TEMP*BIGNUM
  249:                         AK = AK*BIGNUM
  250:                      END IF
  251:                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
  252:                      INFO = K
  253:                      RETURN
  254:                   END IF
  255:                END IF
  256:                Y( K ) = TEMP / AK
  257:    60       CONTINUE
  258:          ELSE
  259:             DO 80 K = 1, N
  260:                IF( K.GE.3 ) THEN
  261:                   TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
  262:                ELSE IF( K.EQ.2 ) THEN
  263:                   TEMP = Y( K ) - B( K-1 )*Y( K-1 )
  264:                ELSE
  265:                   TEMP = Y( K )
  266:                END IF
  267:                AK = A( K )
  268:                PERT = SIGN( TOL, AK )
  269:    70          CONTINUE
  270:                ABSAK = ABS( AK )
  271:                IF( ABSAK.LT.ONE ) THEN
  272:                   IF( ABSAK.LT.SFMIN ) THEN
  273:                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
  274:      $                    THEN
  275:                         AK = AK + PERT
  276:                         PERT = 2*PERT
  277:                         GO TO 70
  278:                      ELSE
  279:                         TEMP = TEMP*BIGNUM
  280:                         AK = AK*BIGNUM
  281:                      END IF
  282:                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
  283:                      AK = AK + PERT
  284:                      PERT = 2*PERT
  285:                      GO TO 70
  286:                   END IF
  287:                END IF
  288:                Y( K ) = TEMP / AK
  289:    80       CONTINUE
  290:          END IF
  291: *
  292:          DO 90 K = N, 2, -1
  293:             IF( IN( K-1 ).EQ.0 ) THEN
  294:                Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K )
  295:             ELSE
  296:                TEMP = Y( K-1 )
  297:                Y( K-1 ) = Y( K )
  298:                Y( K ) = TEMP - C( K-1 )*Y( K )
  299:             END IF
  300:    90    CONTINUE
  301:       END IF
  302: *
  303: *     End of DLAGTS
  304: *
  305:       END

CVSweb interface <joel.bertrand@systella.fr>