File:  [local] / rpl / lapack / lapack / dlagtf.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:29 2010 UTC (13 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, N
   10:       DOUBLE PRECISION   LAMBDA, TOL
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IN( * )
   14:       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
   21: *  tridiagonal matrix and lambda is a scalar, as
   22: *
   23: *     T - lambda*I = PLU,
   24: *
   25: *  where P is a permutation matrix, L is a unit lower tridiagonal matrix
   26: *  with at most one non-zero sub-diagonal elements per column and U is
   27: *  an upper triangular matrix with at most two non-zero super-diagonal
   28: *  elements per column.
   29: *
   30: *  The factorization is obtained by Gaussian elimination with partial
   31: *  pivoting and implicit row scaling.
   32: *
   33: *  The parameter LAMBDA is included in the routine so that DLAGTF may
   34: *  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
   35: *  inverse iteration.
   36: *
   37: *  Arguments
   38: *  =========
   39: *
   40: *  N       (input) INTEGER
   41: *          The order of the matrix T.
   42: *
   43: *  A       (input/output) DOUBLE PRECISION array, dimension (N)
   44: *          On entry, A must contain the diagonal elements of T.
   45: *
   46: *          On exit, A is overwritten by the n diagonal elements of the
   47: *          upper triangular matrix U of the factorization of T.
   48: *
   49: *  LAMBDA  (input) DOUBLE PRECISION
   50: *          On entry, the scalar lambda.
   51: *
   52: *  B       (input/output) DOUBLE PRECISION array, dimension (N-1)
   53: *          On entry, B must contain the (n-1) super-diagonal elements of
   54: *          T.
   55: *
   56: *          On exit, B is overwritten by the (n-1) super-diagonal
   57: *          elements of the matrix U of the factorization of T.
   58: *
   59: *  C       (input/output) DOUBLE PRECISION array, dimension (N-1)
   60: *          On entry, C must contain the (n-1) sub-diagonal elements of
   61: *          T.
   62: *
   63: *          On exit, C is overwritten by the (n-1) sub-diagonal elements
   64: *          of the matrix L of the factorization of T.
   65: *
   66: *  TOL     (input) DOUBLE PRECISION
   67: *          On entry, a relative tolerance used to indicate whether or
   68: *          not the matrix (T - lambda*I) is nearly singular. TOL should
   69: *          normally be chose as approximately the largest relative error
   70: *          in the elements of T. For example, if the elements of T are
   71: *          correct to about 4 significant figures, then TOL should be
   72: *          set to about 5*10**(-4). If TOL is supplied as less than eps,
   73: *          where eps is the relative machine precision, then the value
   74: *          eps is used in place of TOL.
   75: *
   76: *  D       (output) DOUBLE PRECISION array, dimension (N-2)
   77: *          On exit, D is overwritten by the (n-2) second super-diagonal
   78: *          elements of the matrix U of the factorization of T.
   79: *
   80: *  IN      (output) INTEGER array, dimension (N)
   81: *          On exit, IN contains details of the permutation matrix P. If
   82: *          an interchange occurred at the kth step of the elimination,
   83: *          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
   84: *          returns the smallest positive integer j such that
   85: *
   86: *             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
   87: *
   88: *          where norm( A(j) ) denotes the sum of the absolute values of
   89: *          the jth row of the matrix A. If no such j exists then IN(n)
   90: *          is returned as zero. If IN(n) is returned as positive, then a
   91: *          diagonal element of U is small, indicating that
   92: *          (T - lambda*I) is singular or nearly singular,
   93: *
   94: *  INFO    (output) INTEGER
   95: *          = 0   : successful exit
   96: *          .lt. 0: if INFO = -k, the kth argument had an illegal value
   97: *
   98: * =====================================================================
   99: *
  100: *     .. Parameters ..
  101:       DOUBLE PRECISION   ZERO
  102:       PARAMETER          ( ZERO = 0.0D+0 )
  103: *     ..
  104: *     .. Local Scalars ..
  105:       INTEGER            K
  106:       DOUBLE PRECISION   EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
  107: *     ..
  108: *     .. Intrinsic Functions ..
  109:       INTRINSIC          ABS, MAX
  110: *     ..
  111: *     .. External Functions ..
  112:       DOUBLE PRECISION   DLAMCH
  113:       EXTERNAL           DLAMCH
  114: *     ..
  115: *     .. External Subroutines ..
  116:       EXTERNAL           XERBLA
  117: *     ..
  118: *     .. Executable Statements ..
  119: *
  120:       INFO = 0
  121:       IF( N.LT.0 ) THEN
  122:          INFO = -1
  123:          CALL XERBLA( 'DLAGTF', -INFO )
  124:          RETURN
  125:       END IF
  126: *
  127:       IF( N.EQ.0 )
  128:      $   RETURN
  129: *
  130:       A( 1 ) = A( 1 ) - LAMBDA
  131:       IN( N ) = 0
  132:       IF( N.EQ.1 ) THEN
  133:          IF( A( 1 ).EQ.ZERO )
  134:      $      IN( 1 ) = 1
  135:          RETURN
  136:       END IF
  137: *
  138:       EPS = DLAMCH( 'Epsilon' )
  139: *
  140:       TL = MAX( TOL, EPS )
  141:       SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
  142:       DO 10 K = 1, N - 1
  143:          A( K+1 ) = A( K+1 ) - LAMBDA
  144:          SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
  145:          IF( K.LT.( N-1 ) )
  146:      $      SCALE2 = SCALE2 + ABS( B( K+1 ) )
  147:          IF( A( K ).EQ.ZERO ) THEN
  148:             PIV1 = ZERO
  149:          ELSE
  150:             PIV1 = ABS( A( K ) ) / SCALE1
  151:          END IF
  152:          IF( C( K ).EQ.ZERO ) THEN
  153:             IN( K ) = 0
  154:             PIV2 = ZERO
  155:             SCALE1 = SCALE2
  156:             IF( K.LT.( N-1 ) )
  157:      $         D( K ) = ZERO
  158:          ELSE
  159:             PIV2 = ABS( C( K ) ) / SCALE2
  160:             IF( PIV2.LE.PIV1 ) THEN
  161:                IN( K ) = 0
  162:                SCALE1 = SCALE2
  163:                C( K ) = C( K ) / A( K )
  164:                A( K+1 ) = A( K+1 ) - C( K )*B( K )
  165:                IF( K.LT.( N-1 ) )
  166:      $            D( K ) = ZERO
  167:             ELSE
  168:                IN( K ) = 1
  169:                MULT = A( K ) / C( K )
  170:                A( K ) = C( K )
  171:                TEMP = A( K+1 )
  172:                A( K+1 ) = B( K ) - MULT*TEMP
  173:                IF( K.LT.( N-1 ) ) THEN
  174:                   D( K ) = B( K+1 )
  175:                   B( K+1 ) = -MULT*D( K )
  176:                END IF
  177:                B( K ) = TEMP
  178:                C( K ) = MULT
  179:             END IF
  180:          END IF
  181:          IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
  182:      $      IN( N ) = K
  183:    10 CONTINUE
  184:       IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
  185:      $   IN( N ) = N
  186: *
  187:       RETURN
  188: *
  189: *     End of DLAGTF
  190: *
  191:       END

CVSweb interface <joel.bertrand@systella.fr>