Annotation of rpl/lapack/lapack/dlagtf.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DLAGTF
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAGTF + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagtf.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagtf.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagtf.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER            INFO, N
        !            25: *       DOUBLE PRECISION   LAMBDA, TOL
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       INTEGER            IN( * )
        !            29: *       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
        !            39: *> tridiagonal matrix and lambda is a scalar, as
        !            40: *>
        !            41: *>    T - lambda*I = PLU,
        !            42: *>
        !            43: *> where P is a permutation matrix, L is a unit lower tridiagonal matrix
        !            44: *> with at most one non-zero sub-diagonal elements per column and U is
        !            45: *> an upper triangular matrix with at most two non-zero super-diagonal
        !            46: *> elements per column.
        !            47: *>
        !            48: *> The factorization is obtained by Gaussian elimination with partial
        !            49: *> pivoting and implicit row scaling.
        !            50: *>
        !            51: *> The parameter LAMBDA is included in the routine so that DLAGTF may
        !            52: *> be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
        !            53: *> inverse iteration.
        !            54: *> \endverbatim
        !            55: *
        !            56: *  Arguments:
        !            57: *  ==========
        !            58: *
        !            59: *> \param[in] N
        !            60: *> \verbatim
        !            61: *>          N is INTEGER
        !            62: *>          The order of the matrix T.
        !            63: *> \endverbatim
        !            64: *>
        !            65: *> \param[in,out] A
        !            66: *> \verbatim
        !            67: *>          A is DOUBLE PRECISION array, dimension (N)
        !            68: *>          On entry, A must contain the diagonal elements of T.
        !            69: *>
        !            70: *>          On exit, A is overwritten by the n diagonal elements of the
        !            71: *>          upper triangular matrix U of the factorization of T.
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in] LAMBDA
        !            75: *> \verbatim
        !            76: *>          LAMBDA is DOUBLE PRECISION
        !            77: *>          On entry, the scalar lambda.
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in,out] B
        !            81: *> \verbatim
        !            82: *>          B is DOUBLE PRECISION array, dimension (N-1)
        !            83: *>          On entry, B must contain the (n-1) super-diagonal elements of
        !            84: *>          T.
        !            85: *>
        !            86: *>          On exit, B is overwritten by the (n-1) super-diagonal
        !            87: *>          elements of the matrix U of the factorization of T.
        !            88: *> \endverbatim
        !            89: *>
        !            90: *> \param[in,out] C
        !            91: *> \verbatim
        !            92: *>          C is DOUBLE PRECISION array, dimension (N-1)
        !            93: *>          On entry, C must contain the (n-1) sub-diagonal elements of
        !            94: *>          T.
        !            95: *>
        !            96: *>          On exit, C is overwritten by the (n-1) sub-diagonal elements
        !            97: *>          of the matrix L of the factorization of T.
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in] TOL
        !           101: *> \verbatim
        !           102: *>          TOL is DOUBLE PRECISION
        !           103: *>          On entry, a relative tolerance used to indicate whether or
        !           104: *>          not the matrix (T - lambda*I) is nearly singular. TOL should
        !           105: *>          normally be chose as approximately the largest relative error
        !           106: *>          in the elements of T. For example, if the elements of T are
        !           107: *>          correct to about 4 significant figures, then TOL should be
        !           108: *>          set to about 5*10**(-4). If TOL is supplied as less than eps,
        !           109: *>          where eps is the relative machine precision, then the value
        !           110: *>          eps is used in place of TOL.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[out] D
        !           114: *> \verbatim
        !           115: *>          D is DOUBLE PRECISION array, dimension (N-2)
        !           116: *>          On exit, D is overwritten by the (n-2) second super-diagonal
        !           117: *>          elements of the matrix U of the factorization of T.
        !           118: *> \endverbatim
        !           119: *>
        !           120: *> \param[out] IN
        !           121: *> \verbatim
        !           122: *>          IN is INTEGER array, dimension (N)
        !           123: *>          On exit, IN contains details of the permutation matrix P. If
        !           124: *>          an interchange occurred at the kth step of the elimination,
        !           125: *>          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
        !           126: *>          returns the smallest positive integer j such that
        !           127: *>
        !           128: *>             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
        !           129: *>
        !           130: *>          where norm( A(j) ) denotes the sum of the absolute values of
        !           131: *>          the jth row of the matrix A. If no such j exists then IN(n)
        !           132: *>          is returned as zero. If IN(n) is returned as positive, then a
        !           133: *>          diagonal element of U is small, indicating that
        !           134: *>          (T - lambda*I) is singular or nearly singular,
        !           135: *> \endverbatim
        !           136: *>
        !           137: *> \param[out] INFO
        !           138: *> \verbatim
        !           139: *>          INFO is INTEGER
        !           140: *>          = 0   : successful exit
        !           141: *>          .lt. 0: if INFO = -k, the kth argument had an illegal value
        !           142: *> \endverbatim
        !           143: *
        !           144: *  Authors:
        !           145: *  ========
        !           146: *
        !           147: *> \author Univ. of Tennessee 
        !           148: *> \author Univ. of California Berkeley 
        !           149: *> \author Univ. of Colorado Denver 
        !           150: *> \author NAG Ltd. 
        !           151: *
        !           152: *> \date November 2011
        !           153: *
        !           154: *> \ingroup auxOTHERcomputational
        !           155: *
        !           156: *  =====================================================================
1.1       bertrand  157:       SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
                    158: *
1.8     ! bertrand  159: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  160: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    161: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  162: *     November 2011
1.1       bertrand  163: *
                    164: *     .. Scalar Arguments ..
                    165:       INTEGER            INFO, N
                    166:       DOUBLE PRECISION   LAMBDA, TOL
                    167: *     ..
                    168: *     .. Array Arguments ..
                    169:       INTEGER            IN( * )
                    170:       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * )
                    171: *     ..
                    172: *
                    173: * =====================================================================
                    174: *
                    175: *     .. Parameters ..
                    176:       DOUBLE PRECISION   ZERO
                    177:       PARAMETER          ( ZERO = 0.0D+0 )
                    178: *     ..
                    179: *     .. Local Scalars ..
                    180:       INTEGER            K
                    181:       DOUBLE PRECISION   EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
                    182: *     ..
                    183: *     .. Intrinsic Functions ..
                    184:       INTRINSIC          ABS, MAX
                    185: *     ..
                    186: *     .. External Functions ..
                    187:       DOUBLE PRECISION   DLAMCH
                    188:       EXTERNAL           DLAMCH
                    189: *     ..
                    190: *     .. External Subroutines ..
                    191:       EXTERNAL           XERBLA
                    192: *     ..
                    193: *     .. Executable Statements ..
                    194: *
                    195:       INFO = 0
                    196:       IF( N.LT.0 ) THEN
                    197:          INFO = -1
                    198:          CALL XERBLA( 'DLAGTF', -INFO )
                    199:          RETURN
                    200:       END IF
                    201: *
                    202:       IF( N.EQ.0 )
                    203:      $   RETURN
                    204: *
                    205:       A( 1 ) = A( 1 ) - LAMBDA
                    206:       IN( N ) = 0
                    207:       IF( N.EQ.1 ) THEN
                    208:          IF( A( 1 ).EQ.ZERO )
                    209:      $      IN( 1 ) = 1
                    210:          RETURN
                    211:       END IF
                    212: *
                    213:       EPS = DLAMCH( 'Epsilon' )
                    214: *
                    215:       TL = MAX( TOL, EPS )
                    216:       SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
                    217:       DO 10 K = 1, N - 1
                    218:          A( K+1 ) = A( K+1 ) - LAMBDA
                    219:          SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
                    220:          IF( K.LT.( N-1 ) )
                    221:      $      SCALE2 = SCALE2 + ABS( B( K+1 ) )
                    222:          IF( A( K ).EQ.ZERO ) THEN
                    223:             PIV1 = ZERO
                    224:          ELSE
                    225:             PIV1 = ABS( A( K ) ) / SCALE1
                    226:          END IF
                    227:          IF( C( K ).EQ.ZERO ) THEN
                    228:             IN( K ) = 0
                    229:             PIV2 = ZERO
                    230:             SCALE1 = SCALE2
                    231:             IF( K.LT.( N-1 ) )
                    232:      $         D( K ) = ZERO
                    233:          ELSE
                    234:             PIV2 = ABS( C( K ) ) / SCALE2
                    235:             IF( PIV2.LE.PIV1 ) THEN
                    236:                IN( K ) = 0
                    237:                SCALE1 = SCALE2
                    238:                C( K ) = C( K ) / A( K )
                    239:                A( K+1 ) = A( K+1 ) - C( K )*B( K )
                    240:                IF( K.LT.( N-1 ) )
                    241:      $            D( K ) = ZERO
                    242:             ELSE
                    243:                IN( K ) = 1
                    244:                MULT = A( K ) / C( K )
                    245:                A( K ) = C( K )
                    246:                TEMP = A( K+1 )
                    247:                A( K+1 ) = B( K ) - MULT*TEMP
                    248:                IF( K.LT.( N-1 ) ) THEN
                    249:                   D( K ) = B( K+1 )
                    250:                   B( K+1 ) = -MULT*D( K )
                    251:                END IF
                    252:                B( K ) = TEMP
                    253:                C( K ) = MULT
                    254:             END IF
                    255:          END IF
                    256:          IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
                    257:      $      IN( N ) = K
                    258:    10 CONTINUE
                    259:       IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
                    260:      $   IN( N ) = N
                    261: *
                    262:       RETURN
                    263: *
                    264: *     End of DLAGTF
                    265: *
                    266:       END

CVSweb interface <joel.bertrand@systella.fr>