Annotation of rpl/lapack/lapack/dlagtf.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, N
                     10:       DOUBLE PRECISION   LAMBDA, TOL
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       INTEGER            IN( * )
                     14:       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
                     21: *  tridiagonal matrix and lambda is a scalar, as
                     22: *
                     23: *     T - lambda*I = PLU,
                     24: *
                     25: *  where P is a permutation matrix, L is a unit lower tridiagonal matrix
                     26: *  with at most one non-zero sub-diagonal elements per column and U is
                     27: *  an upper triangular matrix with at most two non-zero super-diagonal
                     28: *  elements per column.
                     29: *
                     30: *  The factorization is obtained by Gaussian elimination with partial
                     31: *  pivoting and implicit row scaling.
                     32: *
                     33: *  The parameter LAMBDA is included in the routine so that DLAGTF may
                     34: *  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
                     35: *  inverse iteration.
                     36: *
                     37: *  Arguments
                     38: *  =========
                     39: *
                     40: *  N       (input) INTEGER
                     41: *          The order of the matrix T.
                     42: *
                     43: *  A       (input/output) DOUBLE PRECISION array, dimension (N)
                     44: *          On entry, A must contain the diagonal elements of T.
                     45: *
                     46: *          On exit, A is overwritten by the n diagonal elements of the
                     47: *          upper triangular matrix U of the factorization of T.
                     48: *
                     49: *  LAMBDA  (input) DOUBLE PRECISION
                     50: *          On entry, the scalar lambda.
                     51: *
                     52: *  B       (input/output) DOUBLE PRECISION array, dimension (N-1)
                     53: *          On entry, B must contain the (n-1) super-diagonal elements of
                     54: *          T.
                     55: *
                     56: *          On exit, B is overwritten by the (n-1) super-diagonal
                     57: *          elements of the matrix U of the factorization of T.
                     58: *
                     59: *  C       (input/output) DOUBLE PRECISION array, dimension (N-1)
                     60: *          On entry, C must contain the (n-1) sub-diagonal elements of
                     61: *          T.
                     62: *
                     63: *          On exit, C is overwritten by the (n-1) sub-diagonal elements
                     64: *          of the matrix L of the factorization of T.
                     65: *
                     66: *  TOL     (input) DOUBLE PRECISION
                     67: *          On entry, a relative tolerance used to indicate whether or
                     68: *          not the matrix (T - lambda*I) is nearly singular. TOL should
                     69: *          normally be chose as approximately the largest relative error
                     70: *          in the elements of T. For example, if the elements of T are
                     71: *          correct to about 4 significant figures, then TOL should be
                     72: *          set to about 5*10**(-4). If TOL is supplied as less than eps,
                     73: *          where eps is the relative machine precision, then the value
                     74: *          eps is used in place of TOL.
                     75: *
                     76: *  D       (output) DOUBLE PRECISION array, dimension (N-2)
                     77: *          On exit, D is overwritten by the (n-2) second super-diagonal
                     78: *          elements of the matrix U of the factorization of T.
                     79: *
                     80: *  IN      (output) INTEGER array, dimension (N)
                     81: *          On exit, IN contains details of the permutation matrix P. If
                     82: *          an interchange occurred at the kth step of the elimination,
                     83: *          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
                     84: *          returns the smallest positive integer j such that
                     85: *
                     86: *             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
                     87: *
                     88: *          where norm( A(j) ) denotes the sum of the absolute values of
                     89: *          the jth row of the matrix A. If no such j exists then IN(n)
                     90: *          is returned as zero. If IN(n) is returned as positive, then a
                     91: *          diagonal element of U is small, indicating that
                     92: *          (T - lambda*I) is singular or nearly singular,
                     93: *
                     94: *  INFO    (output) INTEGER
                     95: *          = 0   : successful exit
                     96: *          .lt. 0: if INFO = -k, the kth argument had an illegal value
                     97: *
                     98: * =====================================================================
                     99: *
                    100: *     .. Parameters ..
                    101:       DOUBLE PRECISION   ZERO
                    102:       PARAMETER          ( ZERO = 0.0D+0 )
                    103: *     ..
                    104: *     .. Local Scalars ..
                    105:       INTEGER            K
                    106:       DOUBLE PRECISION   EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
                    107: *     ..
                    108: *     .. Intrinsic Functions ..
                    109:       INTRINSIC          ABS, MAX
                    110: *     ..
                    111: *     .. External Functions ..
                    112:       DOUBLE PRECISION   DLAMCH
                    113:       EXTERNAL           DLAMCH
                    114: *     ..
                    115: *     .. External Subroutines ..
                    116:       EXTERNAL           XERBLA
                    117: *     ..
                    118: *     .. Executable Statements ..
                    119: *
                    120:       INFO = 0
                    121:       IF( N.LT.0 ) THEN
                    122:          INFO = -1
                    123:          CALL XERBLA( 'DLAGTF', -INFO )
                    124:          RETURN
                    125:       END IF
                    126: *
                    127:       IF( N.EQ.0 )
                    128:      $   RETURN
                    129: *
                    130:       A( 1 ) = A( 1 ) - LAMBDA
                    131:       IN( N ) = 0
                    132:       IF( N.EQ.1 ) THEN
                    133:          IF( A( 1 ).EQ.ZERO )
                    134:      $      IN( 1 ) = 1
                    135:          RETURN
                    136:       END IF
                    137: *
                    138:       EPS = DLAMCH( 'Epsilon' )
                    139: *
                    140:       TL = MAX( TOL, EPS )
                    141:       SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
                    142:       DO 10 K = 1, N - 1
                    143:          A( K+1 ) = A( K+1 ) - LAMBDA
                    144:          SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
                    145:          IF( K.LT.( N-1 ) )
                    146:      $      SCALE2 = SCALE2 + ABS( B( K+1 ) )
                    147:          IF( A( K ).EQ.ZERO ) THEN
                    148:             PIV1 = ZERO
                    149:          ELSE
                    150:             PIV1 = ABS( A( K ) ) / SCALE1
                    151:          END IF
                    152:          IF( C( K ).EQ.ZERO ) THEN
                    153:             IN( K ) = 0
                    154:             PIV2 = ZERO
                    155:             SCALE1 = SCALE2
                    156:             IF( K.LT.( N-1 ) )
                    157:      $         D( K ) = ZERO
                    158:          ELSE
                    159:             PIV2 = ABS( C( K ) ) / SCALE2
                    160:             IF( PIV2.LE.PIV1 ) THEN
                    161:                IN( K ) = 0
                    162:                SCALE1 = SCALE2
                    163:                C( K ) = C( K ) / A( K )
                    164:                A( K+1 ) = A( K+1 ) - C( K )*B( K )
                    165:                IF( K.LT.( N-1 ) )
                    166:      $            D( K ) = ZERO
                    167:             ELSE
                    168:                IN( K ) = 1
                    169:                MULT = A( K ) / C( K )
                    170:                A( K ) = C( K )
                    171:                TEMP = A( K+1 )
                    172:                A( K+1 ) = B( K ) - MULT*TEMP
                    173:                IF( K.LT.( N-1 ) ) THEN
                    174:                   D( K ) = B( K+1 )
                    175:                   B( K+1 ) = -MULT*D( K )
                    176:                END IF
                    177:                B( K ) = TEMP
                    178:                C( K ) = MULT
                    179:             END IF
                    180:          END IF
                    181:          IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
                    182:      $      IN( N ) = K
                    183:    10 CONTINUE
                    184:       IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
                    185:      $   IN( N ) = N
                    186: *
                    187:       RETURN
                    188: *
                    189: *     End of DLAGTF
                    190: *
                    191:       END

CVSweb interface <joel.bertrand@systella.fr>