Annotation of rpl/lapack/lapack/dlagtf.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            INFO, N
        !            10:       DOUBLE PRECISION   LAMBDA, TOL
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       INTEGER            IN( * )
        !            14:       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
        !            21: *  tridiagonal matrix and lambda is a scalar, as
        !            22: *
        !            23: *     T - lambda*I = PLU,
        !            24: *
        !            25: *  where P is a permutation matrix, L is a unit lower tridiagonal matrix
        !            26: *  with at most one non-zero sub-diagonal elements per column and U is
        !            27: *  an upper triangular matrix with at most two non-zero super-diagonal
        !            28: *  elements per column.
        !            29: *
        !            30: *  The factorization is obtained by Gaussian elimination with partial
        !            31: *  pivoting and implicit row scaling.
        !            32: *
        !            33: *  The parameter LAMBDA is included in the routine so that DLAGTF may
        !            34: *  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
        !            35: *  inverse iteration.
        !            36: *
        !            37: *  Arguments
        !            38: *  =========
        !            39: *
        !            40: *  N       (input) INTEGER
        !            41: *          The order of the matrix T.
        !            42: *
        !            43: *  A       (input/output) DOUBLE PRECISION array, dimension (N)
        !            44: *          On entry, A must contain the diagonal elements of T.
        !            45: *
        !            46: *          On exit, A is overwritten by the n diagonal elements of the
        !            47: *          upper triangular matrix U of the factorization of T.
        !            48: *
        !            49: *  LAMBDA  (input) DOUBLE PRECISION
        !            50: *          On entry, the scalar lambda.
        !            51: *
        !            52: *  B       (input/output) DOUBLE PRECISION array, dimension (N-1)
        !            53: *          On entry, B must contain the (n-1) super-diagonal elements of
        !            54: *          T.
        !            55: *
        !            56: *          On exit, B is overwritten by the (n-1) super-diagonal
        !            57: *          elements of the matrix U of the factorization of T.
        !            58: *
        !            59: *  C       (input/output) DOUBLE PRECISION array, dimension (N-1)
        !            60: *          On entry, C must contain the (n-1) sub-diagonal elements of
        !            61: *          T.
        !            62: *
        !            63: *          On exit, C is overwritten by the (n-1) sub-diagonal elements
        !            64: *          of the matrix L of the factorization of T.
        !            65: *
        !            66: *  TOL     (input) DOUBLE PRECISION
        !            67: *          On entry, a relative tolerance used to indicate whether or
        !            68: *          not the matrix (T - lambda*I) is nearly singular. TOL should
        !            69: *          normally be chose as approximately the largest relative error
        !            70: *          in the elements of T. For example, if the elements of T are
        !            71: *          correct to about 4 significant figures, then TOL should be
        !            72: *          set to about 5*10**(-4). If TOL is supplied as less than eps,
        !            73: *          where eps is the relative machine precision, then the value
        !            74: *          eps is used in place of TOL.
        !            75: *
        !            76: *  D       (output) DOUBLE PRECISION array, dimension (N-2)
        !            77: *          On exit, D is overwritten by the (n-2) second super-diagonal
        !            78: *          elements of the matrix U of the factorization of T.
        !            79: *
        !            80: *  IN      (output) INTEGER array, dimension (N)
        !            81: *          On exit, IN contains details of the permutation matrix P. If
        !            82: *          an interchange occurred at the kth step of the elimination,
        !            83: *          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
        !            84: *          returns the smallest positive integer j such that
        !            85: *
        !            86: *             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
        !            87: *
        !            88: *          where norm( A(j) ) denotes the sum of the absolute values of
        !            89: *          the jth row of the matrix A. If no such j exists then IN(n)
        !            90: *          is returned as zero. If IN(n) is returned as positive, then a
        !            91: *          diagonal element of U is small, indicating that
        !            92: *          (T - lambda*I) is singular or nearly singular,
        !            93: *
        !            94: *  INFO    (output) INTEGER
        !            95: *          = 0   : successful exit
        !            96: *          .lt. 0: if INFO = -k, the kth argument had an illegal value
        !            97: *
        !            98: * =====================================================================
        !            99: *
        !           100: *     .. Parameters ..
        !           101:       DOUBLE PRECISION   ZERO
        !           102:       PARAMETER          ( ZERO = 0.0D+0 )
        !           103: *     ..
        !           104: *     .. Local Scalars ..
        !           105:       INTEGER            K
        !           106:       DOUBLE PRECISION   EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
        !           107: *     ..
        !           108: *     .. Intrinsic Functions ..
        !           109:       INTRINSIC          ABS, MAX
        !           110: *     ..
        !           111: *     .. External Functions ..
        !           112:       DOUBLE PRECISION   DLAMCH
        !           113:       EXTERNAL           DLAMCH
        !           114: *     ..
        !           115: *     .. External Subroutines ..
        !           116:       EXTERNAL           XERBLA
        !           117: *     ..
        !           118: *     .. Executable Statements ..
        !           119: *
        !           120:       INFO = 0
        !           121:       IF( N.LT.0 ) THEN
        !           122:          INFO = -1
        !           123:          CALL XERBLA( 'DLAGTF', -INFO )
        !           124:          RETURN
        !           125:       END IF
        !           126: *
        !           127:       IF( N.EQ.0 )
        !           128:      $   RETURN
        !           129: *
        !           130:       A( 1 ) = A( 1 ) - LAMBDA
        !           131:       IN( N ) = 0
        !           132:       IF( N.EQ.1 ) THEN
        !           133:          IF( A( 1 ).EQ.ZERO )
        !           134:      $      IN( 1 ) = 1
        !           135:          RETURN
        !           136:       END IF
        !           137: *
        !           138:       EPS = DLAMCH( 'Epsilon' )
        !           139: *
        !           140:       TL = MAX( TOL, EPS )
        !           141:       SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
        !           142:       DO 10 K = 1, N - 1
        !           143:          A( K+1 ) = A( K+1 ) - LAMBDA
        !           144:          SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
        !           145:          IF( K.LT.( N-1 ) )
        !           146:      $      SCALE2 = SCALE2 + ABS( B( K+1 ) )
        !           147:          IF( A( K ).EQ.ZERO ) THEN
        !           148:             PIV1 = ZERO
        !           149:          ELSE
        !           150:             PIV1 = ABS( A( K ) ) / SCALE1
        !           151:          END IF
        !           152:          IF( C( K ).EQ.ZERO ) THEN
        !           153:             IN( K ) = 0
        !           154:             PIV2 = ZERO
        !           155:             SCALE1 = SCALE2
        !           156:             IF( K.LT.( N-1 ) )
        !           157:      $         D( K ) = ZERO
        !           158:          ELSE
        !           159:             PIV2 = ABS( C( K ) ) / SCALE2
        !           160:             IF( PIV2.LE.PIV1 ) THEN
        !           161:                IN( K ) = 0
        !           162:                SCALE1 = SCALE2
        !           163:                C( K ) = C( K ) / A( K )
        !           164:                A( K+1 ) = A( K+1 ) - C( K )*B( K )
        !           165:                IF( K.LT.( N-1 ) )
        !           166:      $            D( K ) = ZERO
        !           167:             ELSE
        !           168:                IN( K ) = 1
        !           169:                MULT = A( K ) / C( K )
        !           170:                A( K ) = C( K )
        !           171:                TEMP = A( K+1 )
        !           172:                A( K+1 ) = B( K ) - MULT*TEMP
        !           173:                IF( K.LT.( N-1 ) ) THEN
        !           174:                   D( K ) = B( K+1 )
        !           175:                   B( K+1 ) = -MULT*D( K )
        !           176:                END IF
        !           177:                B( K ) = TEMP
        !           178:                C( K ) = MULT
        !           179:             END IF
        !           180:          END IF
        !           181:          IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
        !           182:      $      IN( N ) = K
        !           183:    10 CONTINUE
        !           184:       IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
        !           185:      $   IN( N ) = N
        !           186: *
        !           187:       RETURN
        !           188: *
        !           189: *     End of DLAGTF
        !           190: *
        !           191:       END

CVSweb interface <joel.bertrand@systella.fr>