File:  [local] / rpl / lapack / lapack / dlag2.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:17 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
    2:      $                  WR2, WI )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            LDA, LDB
   11:       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
   21: *  problem  A - w B, with scaling as necessary to avoid over-/underflow.
   22: *
   23: *  The scaling factor "s" results in a modified eigenvalue equation
   24: *
   25: *      s A - w B
   26: *
   27: *  where  s  is a non-negative scaling factor chosen so that  w,  w B,
   28: *  and  s A  do not overflow and, if possible, do not underflow, either.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  A       (input) DOUBLE PRECISION array, dimension (LDA, 2)
   34: *          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm
   35: *          is less than 1/SAFMIN.  Entries less than
   36: *          sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
   37: *
   38: *  LDA     (input) INTEGER
   39: *          The leading dimension of the array A.  LDA >= 2.
   40: *
   41: *  B       (input) DOUBLE PRECISION array, dimension (LDB, 2)
   42: *          On entry, the 2 x 2 upper triangular matrix B.  It is
   43: *          assumed that the one-norm of B is less than 1/SAFMIN.  The
   44: *          diagonals should be at least sqrt(SAFMIN) times the largest
   45: *          element of B (in absolute value); if a diagonal is smaller
   46: *          than that, then  +/- sqrt(SAFMIN) will be used instead of
   47: *          that diagonal.
   48: *
   49: *  LDB     (input) INTEGER
   50: *          The leading dimension of the array B.  LDB >= 2.
   51: *
   52: *  SAFMIN  (input) DOUBLE PRECISION
   53: *          The smallest positive number s.t. 1/SAFMIN does not
   54: *          overflow.  (This should always be DLAMCH('S') -- it is an
   55: *          argument in order to avoid having to call DLAMCH frequently.)
   56: *
   57: *  SCALE1  (output) DOUBLE PRECISION
   58: *          A scaling factor used to avoid over-/underflow in the
   59: *          eigenvalue equation which defines the first eigenvalue.  If
   60: *          the eigenvalues are complex, then the eigenvalues are
   61: *          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the
   62: *          exponent range of the machine), SCALE1=SCALE2, and SCALE1
   63: *          will always be positive.  If the eigenvalues are real, then
   64: *          the first (real) eigenvalue is  WR1 / SCALE1 , but this may
   65: *          overflow or underflow, and in fact, SCALE1 may be zero or
   66: *          less than the underflow threshhold if the exact eigenvalue
   67: *          is sufficiently large.
   68: *
   69: *  SCALE2  (output) DOUBLE PRECISION
   70: *          A scaling factor used to avoid over-/underflow in the
   71: *          eigenvalue equation which defines the second eigenvalue.  If
   72: *          the eigenvalues are complex, then SCALE2=SCALE1.  If the
   73: *          eigenvalues are real, then the second (real) eigenvalue is
   74: *          WR2 / SCALE2 , but this may overflow or underflow, and in
   75: *          fact, SCALE2 may be zero or less than the underflow
   76: *          threshhold if the exact eigenvalue is sufficiently large.
   77: *
   78: *  WR1     (output) DOUBLE PRECISION
   79: *          If the eigenvalue is real, then WR1 is SCALE1 times the
   80: *          eigenvalue closest to the (2,2) element of A B**(-1).  If the
   81: *          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
   82: *          part of the eigenvalues.
   83: *
   84: *  WR2     (output) DOUBLE PRECISION
   85: *          If the eigenvalue is real, then WR2 is SCALE2 times the
   86: *          other eigenvalue.  If the eigenvalue is complex, then
   87: *          WR1=WR2 is SCALE1 times the real part of the eigenvalues.
   88: *
   89: *  WI      (output) DOUBLE PRECISION
   90: *          If the eigenvalue is real, then WI is zero.  If the
   91: *          eigenvalue is complex, then WI is SCALE1 times the imaginary
   92: *          part of the eigenvalues.  WI will always be non-negative.
   93: *
   94: *  =====================================================================
   95: *
   96: *     .. Parameters ..
   97:       DOUBLE PRECISION   ZERO, ONE, TWO
   98:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
   99:       DOUBLE PRECISION   HALF
  100:       PARAMETER          ( HALF = ONE / TWO )
  101:       DOUBLE PRECISION   FUZZY1
  102:       PARAMETER          ( FUZZY1 = ONE+1.0D-5 )
  103: *     ..
  104: *     .. Local Scalars ..
  105:       DOUBLE PRECISION   A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
  106:      $                   AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
  107:      $                   BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
  108:      $                   DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
  109:      $                   SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
  110:      $                   WSCALE, WSIZE, WSMALL
  111: *     ..
  112: *     .. Intrinsic Functions ..
  113:       INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
  114: *     ..
  115: *     .. Executable Statements ..
  116: *
  117:       RTMIN = SQRT( SAFMIN )
  118:       RTMAX = ONE / RTMIN
  119:       SAFMAX = ONE / SAFMIN
  120: *
  121: *     Scale A
  122: *
  123:       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
  124:      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
  125:       ASCALE = ONE / ANORM
  126:       A11 = ASCALE*A( 1, 1 )
  127:       A21 = ASCALE*A( 2, 1 )
  128:       A12 = ASCALE*A( 1, 2 )
  129:       A22 = ASCALE*A( 2, 2 )
  130: *
  131: *     Perturb B if necessary to insure non-singularity
  132: *
  133:       B11 = B( 1, 1 )
  134:       B12 = B( 1, 2 )
  135:       B22 = B( 2, 2 )
  136:       BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
  137:       IF( ABS( B11 ).LT.BMIN )
  138:      $   B11 = SIGN( BMIN, B11 )
  139:       IF( ABS( B22 ).LT.BMIN )
  140:      $   B22 = SIGN( BMIN, B22 )
  141: *
  142: *     Scale B
  143: *
  144:       BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
  145:       BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
  146:       BSCALE = ONE / BSIZE
  147:       B11 = B11*BSCALE
  148:       B12 = B12*BSCALE
  149:       B22 = B22*BSCALE
  150: *
  151: *     Compute larger eigenvalue by method described by C. van Loan
  152: *
  153: *     ( AS is A shifted by -SHIFT*B )
  154: *
  155:       BINV11 = ONE / B11
  156:       BINV22 = ONE / B22
  157:       S1 = A11*BINV11
  158:       S2 = A22*BINV22
  159:       IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
  160:          AS12 = A12 - S1*B12
  161:          AS22 = A22 - S1*B22
  162:          SS = A21*( BINV11*BINV22 )
  163:          ABI22 = AS22*BINV22 - SS*B12
  164:          PP = HALF*ABI22
  165:          SHIFT = S1
  166:       ELSE
  167:          AS12 = A12 - S2*B12
  168:          AS11 = A11 - S2*B11
  169:          SS = A21*( BINV11*BINV22 )
  170:          ABI22 = -SS*B12
  171:          PP = HALF*( AS11*BINV11+ABI22 )
  172:          SHIFT = S2
  173:       END IF
  174:       QQ = SS*AS12
  175:       IF( ABS( PP*RTMIN ).GE.ONE ) THEN
  176:          DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
  177:          R = SQRT( ABS( DISCR ) )*RTMAX
  178:       ELSE
  179:          IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
  180:             DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
  181:             R = SQRT( ABS( DISCR ) )*RTMIN
  182:          ELSE
  183:             DISCR = PP**2 + QQ
  184:             R = SQRT( ABS( DISCR ) )
  185:          END IF
  186:       END IF
  187: *
  188: *     Note: the test of R in the following IF is to cover the case when
  189: *           DISCR is small and negative and is flushed to zero during
  190: *           the calculation of R.  On machines which have a consistent
  191: *           flush-to-zero threshhold and handle numbers above that
  192: *           threshhold correctly, it would not be necessary.
  193: *
  194:       IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
  195:          SUM = PP + SIGN( R, PP )
  196:          DIFF = PP - SIGN( R, PP )
  197:          WBIG = SHIFT + SUM
  198: *
  199: *        Compute smaller eigenvalue
  200: *
  201:          WSMALL = SHIFT + DIFF
  202:          IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
  203:             WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
  204:             WSMALL = WDET / WBIG
  205:          END IF
  206: *
  207: *        Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
  208: *        for WR1.
  209: *
  210:          IF( PP.GT.ABI22 ) THEN
  211:             WR1 = MIN( WBIG, WSMALL )
  212:             WR2 = MAX( WBIG, WSMALL )
  213:          ELSE
  214:             WR1 = MAX( WBIG, WSMALL )
  215:             WR2 = MIN( WBIG, WSMALL )
  216:          END IF
  217:          WI = ZERO
  218:       ELSE
  219: *
  220: *        Complex eigenvalues
  221: *
  222:          WR1 = SHIFT + PP
  223:          WR2 = WR1
  224:          WI = R
  225:       END IF
  226: *
  227: *     Further scaling to avoid underflow and overflow in computing
  228: *     SCALE1 and overflow in computing w*B.
  229: *
  230: *     This scale factor (WSCALE) is bounded from above using C1 and C2,
  231: *     and from below using C3 and C4.
  232: *        C1 implements the condition  s A  must never overflow.
  233: *        C2 implements the condition  w B  must never overflow.
  234: *        C3, with C2,
  235: *           implement the condition that s A - w B must never overflow.
  236: *        C4 implements the condition  s    should not underflow.
  237: *        C5 implements the condition  max(s,|w|) should be at least 2.
  238: *
  239:       C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
  240:       C2 = SAFMIN*MAX( ONE, BNORM )
  241:       C3 = BSIZE*SAFMIN
  242:       IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
  243:          C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
  244:       ELSE
  245:          C4 = ONE
  246:       END IF
  247:       IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
  248:          C5 = MIN( ONE, ASCALE*BSIZE )
  249:       ELSE
  250:          C5 = ONE
  251:       END IF
  252: *
  253: *     Scale first eigenvalue
  254: *
  255:       WABS = ABS( WR1 ) + ABS( WI )
  256:       WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
  257:      $        MIN( C4, HALF*MAX( WABS, C5 ) ) )
  258:       IF( WSIZE.NE.ONE ) THEN
  259:          WSCALE = ONE / WSIZE
  260:          IF( WSIZE.GT.ONE ) THEN
  261:             SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
  262:      $               MIN( ASCALE, BSIZE )
  263:          ELSE
  264:             SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
  265:      $               MAX( ASCALE, BSIZE )
  266:          END IF
  267:          WR1 = WR1*WSCALE
  268:          IF( WI.NE.ZERO ) THEN
  269:             WI = WI*WSCALE
  270:             WR2 = WR1
  271:             SCALE2 = SCALE1
  272:          END IF
  273:       ELSE
  274:          SCALE1 = ASCALE*BSIZE
  275:          SCALE2 = SCALE1
  276:       END IF
  277: *
  278: *     Scale second eigenvalue (if real)
  279: *
  280:       IF( WI.EQ.ZERO ) THEN
  281:          WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
  282:      $           MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
  283:          IF( WSIZE.NE.ONE ) THEN
  284:             WSCALE = ONE / WSIZE
  285:             IF( WSIZE.GT.ONE ) THEN
  286:                SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
  287:      $                  MIN( ASCALE, BSIZE )
  288:             ELSE
  289:                SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
  290:      $                  MAX( ASCALE, BSIZE )
  291:             END IF
  292:             WR2 = WR2*WSCALE
  293:          ELSE
  294:             SCALE2 = ASCALE*BSIZE
  295:          END IF
  296:       END IF
  297: *
  298: *     End of DLAG2
  299: *
  300:       RETURN
  301:       END

CVSweb interface <joel.bertrand@systella.fr>