File:  [local] / rpl / lapack / lapack / dlag2.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:17:56 2018 UTC (6 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAG2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlag2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlag2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlag2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
   22: *                         WR2, WI )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            LDA, LDB
   26: *       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
   39: *> problem  A - w B, with scaling as necessary to avoid over-/underflow.
   40: *>
   41: *> The scaling factor "s" results in a modified eigenvalue equation
   42: *>
   43: *>     s A - w B
   44: *>
   45: *> where  s  is a non-negative scaling factor chosen so that  w,  w B,
   46: *> and  s A  do not overflow and, if possible, do not underflow, either.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] A
   53: *> \verbatim
   54: *>          A is DOUBLE PRECISION array, dimension (LDA, 2)
   55: *>          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm
   56: *>          is less than 1/SAFMIN.  Entries less than
   57: *>          sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] LDA
   61: *> \verbatim
   62: *>          LDA is INTEGER
   63: *>          The leading dimension of the array A.  LDA >= 2.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] B
   67: *> \verbatim
   68: *>          B is DOUBLE PRECISION array, dimension (LDB, 2)
   69: *>          On entry, the 2 x 2 upper triangular matrix B.  It is
   70: *>          assumed that the one-norm of B is less than 1/SAFMIN.  The
   71: *>          diagonals should be at least sqrt(SAFMIN) times the largest
   72: *>          element of B (in absolute value); if a diagonal is smaller
   73: *>          than that, then  +/- sqrt(SAFMIN) will be used instead of
   74: *>          that diagonal.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] LDB
   78: *> \verbatim
   79: *>          LDB is INTEGER
   80: *>          The leading dimension of the array B.  LDB >= 2.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] SAFMIN
   84: *> \verbatim
   85: *>          SAFMIN is DOUBLE PRECISION
   86: *>          The smallest positive number s.t. 1/SAFMIN does not
   87: *>          overflow.  (This should always be DLAMCH('S') -- it is an
   88: *>          argument in order to avoid having to call DLAMCH frequently.)
   89: *> \endverbatim
   90: *>
   91: *> \param[out] SCALE1
   92: *> \verbatim
   93: *>          SCALE1 is DOUBLE PRECISION
   94: *>          A scaling factor used to avoid over-/underflow in the
   95: *>          eigenvalue equation which defines the first eigenvalue.  If
   96: *>          the eigenvalues are complex, then the eigenvalues are
   97: *>          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the
   98: *>          exponent range of the machine), SCALE1=SCALE2, and SCALE1
   99: *>          will always be positive.  If the eigenvalues are real, then
  100: *>          the first (real) eigenvalue is  WR1 / SCALE1 , but this may
  101: *>          overflow or underflow, and in fact, SCALE1 may be zero or
  102: *>          less than the underflow threshold if the exact eigenvalue
  103: *>          is sufficiently large.
  104: *> \endverbatim
  105: *>
  106: *> \param[out] SCALE2
  107: *> \verbatim
  108: *>          SCALE2 is DOUBLE PRECISION
  109: *>          A scaling factor used to avoid over-/underflow in the
  110: *>          eigenvalue equation which defines the second eigenvalue.  If
  111: *>          the eigenvalues are complex, then SCALE2=SCALE1.  If the
  112: *>          eigenvalues are real, then the second (real) eigenvalue is
  113: *>          WR2 / SCALE2 , but this may overflow or underflow, and in
  114: *>          fact, SCALE2 may be zero or less than the underflow
  115: *>          threshold if the exact eigenvalue is sufficiently large.
  116: *> \endverbatim
  117: *>
  118: *> \param[out] WR1
  119: *> \verbatim
  120: *>          WR1 is DOUBLE PRECISION
  121: *>          If the eigenvalue is real, then WR1 is SCALE1 times the
  122: *>          eigenvalue closest to the (2,2) element of A B**(-1).  If the
  123: *>          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
  124: *>          part of the eigenvalues.
  125: *> \endverbatim
  126: *>
  127: *> \param[out] WR2
  128: *> \verbatim
  129: *>          WR2 is DOUBLE PRECISION
  130: *>          If the eigenvalue is real, then WR2 is SCALE2 times the
  131: *>          other eigenvalue.  If the eigenvalue is complex, then
  132: *>          WR1=WR2 is SCALE1 times the real part of the eigenvalues.
  133: *> \endverbatim
  134: *>
  135: *> \param[out] WI
  136: *> \verbatim
  137: *>          WI is DOUBLE PRECISION
  138: *>          If the eigenvalue is real, then WI is zero.  If the
  139: *>          eigenvalue is complex, then WI is SCALE1 times the imaginary
  140: *>          part of the eigenvalues.  WI will always be non-negative.
  141: *> \endverbatim
  142: *
  143: *  Authors:
  144: *  ========
  145: *
  146: *> \author Univ. of Tennessee
  147: *> \author Univ. of California Berkeley
  148: *> \author Univ. of Colorado Denver
  149: *> \author NAG Ltd.
  150: *
  151: *> \date June 2016
  152: *
  153: *> \ingroup doubleOTHERauxiliary
  154: *
  155: *  =====================================================================
  156:       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
  157:      $                  WR2, WI )
  158: *
  159: *  -- LAPACK auxiliary routine (version 3.7.0) --
  160: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  161: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  162: *     June 2016
  163: *
  164: *     .. Scalar Arguments ..
  165:       INTEGER            LDA, LDB
  166:       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
  167: *     ..
  168: *     .. Array Arguments ..
  169:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
  170: *     ..
  171: *
  172: *  =====================================================================
  173: *
  174: *     .. Parameters ..
  175:       DOUBLE PRECISION   ZERO, ONE, TWO
  176:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  177:       DOUBLE PRECISION   HALF
  178:       PARAMETER          ( HALF = ONE / TWO )
  179:       DOUBLE PRECISION   FUZZY1
  180:       PARAMETER          ( FUZZY1 = ONE+1.0D-5 )
  181: *     ..
  182: *     .. Local Scalars ..
  183:       DOUBLE PRECISION   A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
  184:      $                   AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
  185:      $                   BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
  186:      $                   DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
  187:      $                   SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
  188:      $                   WSCALE, WSIZE, WSMALL
  189: *     ..
  190: *     .. Intrinsic Functions ..
  191:       INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
  192: *     ..
  193: *     .. Executable Statements ..
  194: *
  195:       RTMIN = SQRT( SAFMIN )
  196:       RTMAX = ONE / RTMIN
  197:       SAFMAX = ONE / SAFMIN
  198: *
  199: *     Scale A
  200: *
  201:       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
  202:      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
  203:       ASCALE = ONE / ANORM
  204:       A11 = ASCALE*A( 1, 1 )
  205:       A21 = ASCALE*A( 2, 1 )
  206:       A12 = ASCALE*A( 1, 2 )
  207:       A22 = ASCALE*A( 2, 2 )
  208: *
  209: *     Perturb B if necessary to insure non-singularity
  210: *
  211:       B11 = B( 1, 1 )
  212:       B12 = B( 1, 2 )
  213:       B22 = B( 2, 2 )
  214:       BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
  215:       IF( ABS( B11 ).LT.BMIN )
  216:      $   B11 = SIGN( BMIN, B11 )
  217:       IF( ABS( B22 ).LT.BMIN )
  218:      $   B22 = SIGN( BMIN, B22 )
  219: *
  220: *     Scale B
  221: *
  222:       BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
  223:       BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
  224:       BSCALE = ONE / BSIZE
  225:       B11 = B11*BSCALE
  226:       B12 = B12*BSCALE
  227:       B22 = B22*BSCALE
  228: *
  229: *     Compute larger eigenvalue by method described by C. van Loan
  230: *
  231: *     ( AS is A shifted by -SHIFT*B )
  232: *
  233:       BINV11 = ONE / B11
  234:       BINV22 = ONE / B22
  235:       S1 = A11*BINV11
  236:       S2 = A22*BINV22
  237:       IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
  238:          AS12 = A12 - S1*B12
  239:          AS22 = A22 - S1*B22
  240:          SS = A21*( BINV11*BINV22 )
  241:          ABI22 = AS22*BINV22 - SS*B12
  242:          PP = HALF*ABI22
  243:          SHIFT = S1
  244:       ELSE
  245:          AS12 = A12 - S2*B12
  246:          AS11 = A11 - S2*B11
  247:          SS = A21*( BINV11*BINV22 )
  248:          ABI22 = -SS*B12
  249:          PP = HALF*( AS11*BINV11+ABI22 )
  250:          SHIFT = S2
  251:       END IF
  252:       QQ = SS*AS12
  253:       IF( ABS( PP*RTMIN ).GE.ONE ) THEN
  254:          DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
  255:          R = SQRT( ABS( DISCR ) )*RTMAX
  256:       ELSE
  257:          IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
  258:             DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
  259:             R = SQRT( ABS( DISCR ) )*RTMIN
  260:          ELSE
  261:             DISCR = PP**2 + QQ
  262:             R = SQRT( ABS( DISCR ) )
  263:          END IF
  264:       END IF
  265: *
  266: *     Note: the test of R in the following IF is to cover the case when
  267: *           DISCR is small and negative and is flushed to zero during
  268: *           the calculation of R.  On machines which have a consistent
  269: *           flush-to-zero threshold and handle numbers above that
  270: *           threshold correctly, it would not be necessary.
  271: *
  272:       IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
  273:          SUM = PP + SIGN( R, PP )
  274:          DIFF = PP - SIGN( R, PP )
  275:          WBIG = SHIFT + SUM
  276: *
  277: *        Compute smaller eigenvalue
  278: *
  279:          WSMALL = SHIFT + DIFF
  280:          IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
  281:             WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
  282:             WSMALL = WDET / WBIG
  283:          END IF
  284: *
  285: *        Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
  286: *        for WR1.
  287: *
  288:          IF( PP.GT.ABI22 ) THEN
  289:             WR1 = MIN( WBIG, WSMALL )
  290:             WR2 = MAX( WBIG, WSMALL )
  291:          ELSE
  292:             WR1 = MAX( WBIG, WSMALL )
  293:             WR2 = MIN( WBIG, WSMALL )
  294:          END IF
  295:          WI = ZERO
  296:       ELSE
  297: *
  298: *        Complex eigenvalues
  299: *
  300:          WR1 = SHIFT + PP
  301:          WR2 = WR1
  302:          WI = R
  303:       END IF
  304: *
  305: *     Further scaling to avoid underflow and overflow in computing
  306: *     SCALE1 and overflow in computing w*B.
  307: *
  308: *     This scale factor (WSCALE) is bounded from above using C1 and C2,
  309: *     and from below using C3 and C4.
  310: *        C1 implements the condition  s A  must never overflow.
  311: *        C2 implements the condition  w B  must never overflow.
  312: *        C3, with C2,
  313: *           implement the condition that s A - w B must never overflow.
  314: *        C4 implements the condition  s    should not underflow.
  315: *        C5 implements the condition  max(s,|w|) should be at least 2.
  316: *
  317:       C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
  318:       C2 = SAFMIN*MAX( ONE, BNORM )
  319:       C3 = BSIZE*SAFMIN
  320:       IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
  321:          C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
  322:       ELSE
  323:          C4 = ONE
  324:       END IF
  325:       IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
  326:          C5 = MIN( ONE, ASCALE*BSIZE )
  327:       ELSE
  328:          C5 = ONE
  329:       END IF
  330: *
  331: *     Scale first eigenvalue
  332: *
  333:       WABS = ABS( WR1 ) + ABS( WI )
  334:       WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
  335:      $        MIN( C4, HALF*MAX( WABS, C5 ) ) )
  336:       IF( WSIZE.NE.ONE ) THEN
  337:          WSCALE = ONE / WSIZE
  338:          IF( WSIZE.GT.ONE ) THEN
  339:             SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
  340:      $               MIN( ASCALE, BSIZE )
  341:          ELSE
  342:             SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
  343:      $               MAX( ASCALE, BSIZE )
  344:          END IF
  345:          WR1 = WR1*WSCALE
  346:          IF( WI.NE.ZERO ) THEN
  347:             WI = WI*WSCALE
  348:             WR2 = WR1
  349:             SCALE2 = SCALE1
  350:          END IF
  351:       ELSE
  352:          SCALE1 = ASCALE*BSIZE
  353:          SCALE2 = SCALE1
  354:       END IF
  355: *
  356: *     Scale second eigenvalue (if real)
  357: *
  358:       IF( WI.EQ.ZERO ) THEN
  359:          WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
  360:      $           MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
  361:          IF( WSIZE.NE.ONE ) THEN
  362:             WSCALE = ONE / WSIZE
  363:             IF( WSIZE.GT.ONE ) THEN
  364:                SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
  365:      $                  MIN( ASCALE, BSIZE )
  366:             ELSE
  367:                SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
  368:      $                  MAX( ASCALE, BSIZE )
  369:             END IF
  370:             WR2 = WR2*WSCALE
  371:          ELSE
  372:             SCALE2 = ASCALE*BSIZE
  373:          END IF
  374:       END IF
  375: *
  376: *     End of DLAG2
  377: *
  378:       RETURN
  379:       END

CVSweb interface <joel.bertrand@systella.fr>