Annotation of rpl/lapack/lapack/dlag2.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DLAG2
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAG2 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlag2.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlag2.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlag2.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
        !            22: *                         WR2, WI )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            LDA, LDB
        !            26: *       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
        !            39: *> problem  A - w B, with scaling as necessary to avoid over-/underflow.
        !            40: *>
        !            41: *> The scaling factor "s" results in a modified eigenvalue equation
        !            42: *>
        !            43: *>     s A - w B
        !            44: *>
        !            45: *> where  s  is a non-negative scaling factor chosen so that  w,  w B,
        !            46: *> and  s A  do not overflow and, if possible, do not underflow, either.
        !            47: *> \endverbatim
        !            48: *
        !            49: *  Arguments:
        !            50: *  ==========
        !            51: *
        !            52: *> \param[in] A
        !            53: *> \verbatim
        !            54: *>          A is DOUBLE PRECISION array, dimension (LDA, 2)
        !            55: *>          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm
        !            56: *>          is less than 1/SAFMIN.  Entries less than
        !            57: *>          sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
        !            58: *> \endverbatim
        !            59: *>
        !            60: *> \param[in] LDA
        !            61: *> \verbatim
        !            62: *>          LDA is INTEGER
        !            63: *>          The leading dimension of the array A.  LDA >= 2.
        !            64: *> \endverbatim
        !            65: *>
        !            66: *> \param[in] B
        !            67: *> \verbatim
        !            68: *>          B is DOUBLE PRECISION array, dimension (LDB, 2)
        !            69: *>          On entry, the 2 x 2 upper triangular matrix B.  It is
        !            70: *>          assumed that the one-norm of B is less than 1/SAFMIN.  The
        !            71: *>          diagonals should be at least sqrt(SAFMIN) times the largest
        !            72: *>          element of B (in absolute value); if a diagonal is smaller
        !            73: *>          than that, then  +/- sqrt(SAFMIN) will be used instead of
        !            74: *>          that diagonal.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in] LDB
        !            78: *> \verbatim
        !            79: *>          LDB is INTEGER
        !            80: *>          The leading dimension of the array B.  LDB >= 2.
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in] SAFMIN
        !            84: *> \verbatim
        !            85: *>          SAFMIN is DOUBLE PRECISION
        !            86: *>          The smallest positive number s.t. 1/SAFMIN does not
        !            87: *>          overflow.  (This should always be DLAMCH('S') -- it is an
        !            88: *>          argument in order to avoid having to call DLAMCH frequently.)
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[out] SCALE1
        !            92: *> \verbatim
        !            93: *>          SCALE1 is DOUBLE PRECISION
        !            94: *>          A scaling factor used to avoid over-/underflow in the
        !            95: *>          eigenvalue equation which defines the first eigenvalue.  If
        !            96: *>          the eigenvalues are complex, then the eigenvalues are
        !            97: *>          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the
        !            98: *>          exponent range of the machine), SCALE1=SCALE2, and SCALE1
        !            99: *>          will always be positive.  If the eigenvalues are real, then
        !           100: *>          the first (real) eigenvalue is  WR1 / SCALE1 , but this may
        !           101: *>          overflow or underflow, and in fact, SCALE1 may be zero or
        !           102: *>          less than the underflow threshhold if the exact eigenvalue
        !           103: *>          is sufficiently large.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[out] SCALE2
        !           107: *> \verbatim
        !           108: *>          SCALE2 is DOUBLE PRECISION
        !           109: *>          A scaling factor used to avoid over-/underflow in the
        !           110: *>          eigenvalue equation which defines the second eigenvalue.  If
        !           111: *>          the eigenvalues are complex, then SCALE2=SCALE1.  If the
        !           112: *>          eigenvalues are real, then the second (real) eigenvalue is
        !           113: *>          WR2 / SCALE2 , but this may overflow or underflow, and in
        !           114: *>          fact, SCALE2 may be zero or less than the underflow
        !           115: *>          threshhold if the exact eigenvalue is sufficiently large.
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[out] WR1
        !           119: *> \verbatim
        !           120: *>          WR1 is DOUBLE PRECISION
        !           121: *>          If the eigenvalue is real, then WR1 is SCALE1 times the
        !           122: *>          eigenvalue closest to the (2,2) element of A B**(-1).  If the
        !           123: *>          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
        !           124: *>          part of the eigenvalues.
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[out] WR2
        !           128: *> \verbatim
        !           129: *>          WR2 is DOUBLE PRECISION
        !           130: *>          If the eigenvalue is real, then WR2 is SCALE2 times the
        !           131: *>          other eigenvalue.  If the eigenvalue is complex, then
        !           132: *>          WR1=WR2 is SCALE1 times the real part of the eigenvalues.
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[out] WI
        !           136: *> \verbatim
        !           137: *>          WI is DOUBLE PRECISION
        !           138: *>          If the eigenvalue is real, then WI is zero.  If the
        !           139: *>          eigenvalue is complex, then WI is SCALE1 times the imaginary
        !           140: *>          part of the eigenvalues.  WI will always be non-negative.
        !           141: *> \endverbatim
        !           142: *
        !           143: *  Authors:
        !           144: *  ========
        !           145: *
        !           146: *> \author Univ. of Tennessee 
        !           147: *> \author Univ. of California Berkeley 
        !           148: *> \author Univ. of Colorado Denver 
        !           149: *> \author NAG Ltd. 
        !           150: *
        !           151: *> \date November 2011
        !           152: *
        !           153: *> \ingroup doubleOTHERauxiliary
        !           154: *
        !           155: *  =====================================================================
1.1       bertrand  156:       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
                    157:      $                  WR2, WI )
                    158: *
1.8     ! bertrand  159: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  160: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    161: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  162: *     November 2011
1.1       bertrand  163: *
                    164: *     .. Scalar Arguments ..
                    165:       INTEGER            LDA, LDB
                    166:       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
                    167: *     ..
                    168: *     .. Array Arguments ..
                    169:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                    170: *     ..
                    171: *
                    172: *  =====================================================================
                    173: *
                    174: *     .. Parameters ..
                    175:       DOUBLE PRECISION   ZERO, ONE, TWO
                    176:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    177:       DOUBLE PRECISION   HALF
                    178:       PARAMETER          ( HALF = ONE / TWO )
                    179:       DOUBLE PRECISION   FUZZY1
                    180:       PARAMETER          ( FUZZY1 = ONE+1.0D-5 )
                    181: *     ..
                    182: *     .. Local Scalars ..
                    183:       DOUBLE PRECISION   A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
                    184:      $                   AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
                    185:      $                   BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
                    186:      $                   DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
                    187:      $                   SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
                    188:      $                   WSCALE, WSIZE, WSMALL
                    189: *     ..
                    190: *     .. Intrinsic Functions ..
                    191:       INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
                    192: *     ..
                    193: *     .. Executable Statements ..
                    194: *
                    195:       RTMIN = SQRT( SAFMIN )
                    196:       RTMAX = ONE / RTMIN
                    197:       SAFMAX = ONE / SAFMIN
                    198: *
                    199: *     Scale A
                    200: *
                    201:       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
                    202:      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
                    203:       ASCALE = ONE / ANORM
                    204:       A11 = ASCALE*A( 1, 1 )
                    205:       A21 = ASCALE*A( 2, 1 )
                    206:       A12 = ASCALE*A( 1, 2 )
                    207:       A22 = ASCALE*A( 2, 2 )
                    208: *
                    209: *     Perturb B if necessary to insure non-singularity
                    210: *
                    211:       B11 = B( 1, 1 )
                    212:       B12 = B( 1, 2 )
                    213:       B22 = B( 2, 2 )
                    214:       BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
                    215:       IF( ABS( B11 ).LT.BMIN )
                    216:      $   B11 = SIGN( BMIN, B11 )
                    217:       IF( ABS( B22 ).LT.BMIN )
                    218:      $   B22 = SIGN( BMIN, B22 )
                    219: *
                    220: *     Scale B
                    221: *
                    222:       BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
                    223:       BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
                    224:       BSCALE = ONE / BSIZE
                    225:       B11 = B11*BSCALE
                    226:       B12 = B12*BSCALE
                    227:       B22 = B22*BSCALE
                    228: *
                    229: *     Compute larger eigenvalue by method described by C. van Loan
                    230: *
                    231: *     ( AS is A shifted by -SHIFT*B )
                    232: *
                    233:       BINV11 = ONE / B11
                    234:       BINV22 = ONE / B22
                    235:       S1 = A11*BINV11
                    236:       S2 = A22*BINV22
                    237:       IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
                    238:          AS12 = A12 - S1*B12
                    239:          AS22 = A22 - S1*B22
                    240:          SS = A21*( BINV11*BINV22 )
                    241:          ABI22 = AS22*BINV22 - SS*B12
                    242:          PP = HALF*ABI22
                    243:          SHIFT = S1
                    244:       ELSE
                    245:          AS12 = A12 - S2*B12
                    246:          AS11 = A11 - S2*B11
                    247:          SS = A21*( BINV11*BINV22 )
                    248:          ABI22 = -SS*B12
                    249:          PP = HALF*( AS11*BINV11+ABI22 )
                    250:          SHIFT = S2
                    251:       END IF
                    252:       QQ = SS*AS12
                    253:       IF( ABS( PP*RTMIN ).GE.ONE ) THEN
                    254:          DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
                    255:          R = SQRT( ABS( DISCR ) )*RTMAX
                    256:       ELSE
                    257:          IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
                    258:             DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
                    259:             R = SQRT( ABS( DISCR ) )*RTMIN
                    260:          ELSE
                    261:             DISCR = PP**2 + QQ
                    262:             R = SQRT( ABS( DISCR ) )
                    263:          END IF
                    264:       END IF
                    265: *
                    266: *     Note: the test of R in the following IF is to cover the case when
                    267: *           DISCR is small and negative and is flushed to zero during
                    268: *           the calculation of R.  On machines which have a consistent
                    269: *           flush-to-zero threshhold and handle numbers above that
                    270: *           threshhold correctly, it would not be necessary.
                    271: *
                    272:       IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
                    273:          SUM = PP + SIGN( R, PP )
                    274:          DIFF = PP - SIGN( R, PP )
                    275:          WBIG = SHIFT + SUM
                    276: *
                    277: *        Compute smaller eigenvalue
                    278: *
                    279:          WSMALL = SHIFT + DIFF
                    280:          IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
                    281:             WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
                    282:             WSMALL = WDET / WBIG
                    283:          END IF
                    284: *
                    285: *        Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
                    286: *        for WR1.
                    287: *
                    288:          IF( PP.GT.ABI22 ) THEN
                    289:             WR1 = MIN( WBIG, WSMALL )
                    290:             WR2 = MAX( WBIG, WSMALL )
                    291:          ELSE
                    292:             WR1 = MAX( WBIG, WSMALL )
                    293:             WR2 = MIN( WBIG, WSMALL )
                    294:          END IF
                    295:          WI = ZERO
                    296:       ELSE
                    297: *
                    298: *        Complex eigenvalues
                    299: *
                    300:          WR1 = SHIFT + PP
                    301:          WR2 = WR1
                    302:          WI = R
                    303:       END IF
                    304: *
                    305: *     Further scaling to avoid underflow and overflow in computing
                    306: *     SCALE1 and overflow in computing w*B.
                    307: *
                    308: *     This scale factor (WSCALE) is bounded from above using C1 and C2,
                    309: *     and from below using C3 and C4.
                    310: *        C1 implements the condition  s A  must never overflow.
                    311: *        C2 implements the condition  w B  must never overflow.
                    312: *        C3, with C2,
                    313: *           implement the condition that s A - w B must never overflow.
                    314: *        C4 implements the condition  s    should not underflow.
                    315: *        C5 implements the condition  max(s,|w|) should be at least 2.
                    316: *
                    317:       C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
                    318:       C2 = SAFMIN*MAX( ONE, BNORM )
                    319:       C3 = BSIZE*SAFMIN
                    320:       IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
                    321:          C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
                    322:       ELSE
                    323:          C4 = ONE
                    324:       END IF
                    325:       IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
                    326:          C5 = MIN( ONE, ASCALE*BSIZE )
                    327:       ELSE
                    328:          C5 = ONE
                    329:       END IF
                    330: *
                    331: *     Scale first eigenvalue
                    332: *
                    333:       WABS = ABS( WR1 ) + ABS( WI )
                    334:       WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
                    335:      $        MIN( C4, HALF*MAX( WABS, C5 ) ) )
                    336:       IF( WSIZE.NE.ONE ) THEN
                    337:          WSCALE = ONE / WSIZE
                    338:          IF( WSIZE.GT.ONE ) THEN
                    339:             SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
                    340:      $               MIN( ASCALE, BSIZE )
                    341:          ELSE
                    342:             SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
                    343:      $               MAX( ASCALE, BSIZE )
                    344:          END IF
                    345:          WR1 = WR1*WSCALE
                    346:          IF( WI.NE.ZERO ) THEN
                    347:             WI = WI*WSCALE
                    348:             WR2 = WR1
                    349:             SCALE2 = SCALE1
                    350:          END IF
                    351:       ELSE
                    352:          SCALE1 = ASCALE*BSIZE
                    353:          SCALE2 = SCALE1
                    354:       END IF
                    355: *
                    356: *     Scale second eigenvalue (if real)
                    357: *
                    358:       IF( WI.EQ.ZERO ) THEN
                    359:          WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
                    360:      $           MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
                    361:          IF( WSIZE.NE.ONE ) THEN
                    362:             WSCALE = ONE / WSIZE
                    363:             IF( WSIZE.GT.ONE ) THEN
                    364:                SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
                    365:      $                  MIN( ASCALE, BSIZE )
                    366:             ELSE
                    367:                SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
                    368:      $                  MAX( ASCALE, BSIZE )
                    369:             END IF
                    370:             WR2 = WR2*WSCALE
                    371:          ELSE
                    372:             SCALE2 = ASCALE*BSIZE
                    373:          END IF
                    374:       END IF
                    375: *
                    376: *     End of DLAG2
                    377: *
                    378:       RETURN
                    379:       END

CVSweb interface <joel.bertrand@systella.fr>