Annotation of rpl/lapack/lapack/dlag2.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
                      2:      $                  WR2, WI )
                      3: *
                      4: *  -- LAPACK auxiliary routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            LDA, LDB
                     11:       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
                     21: *  problem  A - w B, with scaling as necessary to avoid over-/underflow.
                     22: *
                     23: *  The scaling factor "s" results in a modified eigenvalue equation
                     24: *
                     25: *      s A - w B
                     26: *
                     27: *  where  s  is a non-negative scaling factor chosen so that  w,  w B,
                     28: *  and  s A  do not overflow and, if possible, do not underflow, either.
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  A       (input) DOUBLE PRECISION array, dimension (LDA, 2)
                     34: *          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm
                     35: *          is less than 1/SAFMIN.  Entries less than
                     36: *          sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
                     37: *
                     38: *  LDA     (input) INTEGER
                     39: *          The leading dimension of the array A.  LDA >= 2.
                     40: *
                     41: *  B       (input) DOUBLE PRECISION array, dimension (LDB, 2)
                     42: *          On entry, the 2 x 2 upper triangular matrix B.  It is
                     43: *          assumed that the one-norm of B is less than 1/SAFMIN.  The
                     44: *          diagonals should be at least sqrt(SAFMIN) times the largest
                     45: *          element of B (in absolute value); if a diagonal is smaller
                     46: *          than that, then  +/- sqrt(SAFMIN) will be used instead of
                     47: *          that diagonal.
                     48: *
                     49: *  LDB     (input) INTEGER
                     50: *          The leading dimension of the array B.  LDB >= 2.
                     51: *
                     52: *  SAFMIN  (input) DOUBLE PRECISION
                     53: *          The smallest positive number s.t. 1/SAFMIN does not
                     54: *          overflow.  (This should always be DLAMCH('S') -- it is an
                     55: *          argument in order to avoid having to call DLAMCH frequently.)
                     56: *
                     57: *  SCALE1  (output) DOUBLE PRECISION
                     58: *          A scaling factor used to avoid over-/underflow in the
                     59: *          eigenvalue equation which defines the first eigenvalue.  If
                     60: *          the eigenvalues are complex, then the eigenvalues are
                     61: *          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the
                     62: *          exponent range of the machine), SCALE1=SCALE2, and SCALE1
                     63: *          will always be positive.  If the eigenvalues are real, then
                     64: *          the first (real) eigenvalue is  WR1 / SCALE1 , but this may
                     65: *          overflow or underflow, and in fact, SCALE1 may be zero or
                     66: *          less than the underflow threshhold if the exact eigenvalue
                     67: *          is sufficiently large.
                     68: *
                     69: *  SCALE2  (output) DOUBLE PRECISION
                     70: *          A scaling factor used to avoid over-/underflow in the
                     71: *          eigenvalue equation which defines the second eigenvalue.  If
                     72: *          the eigenvalues are complex, then SCALE2=SCALE1.  If the
                     73: *          eigenvalues are real, then the second (real) eigenvalue is
                     74: *          WR2 / SCALE2 , but this may overflow or underflow, and in
                     75: *          fact, SCALE2 may be zero or less than the underflow
                     76: *          threshhold if the exact eigenvalue is sufficiently large.
                     77: *
                     78: *  WR1     (output) DOUBLE PRECISION
                     79: *          If the eigenvalue is real, then WR1 is SCALE1 times the
                     80: *          eigenvalue closest to the (2,2) element of A B**(-1).  If the
                     81: *          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
                     82: *          part of the eigenvalues.
                     83: *
                     84: *  WR2     (output) DOUBLE PRECISION
                     85: *          If the eigenvalue is real, then WR2 is SCALE2 times the
                     86: *          other eigenvalue.  If the eigenvalue is complex, then
                     87: *          WR1=WR2 is SCALE1 times the real part of the eigenvalues.
                     88: *
                     89: *  WI      (output) DOUBLE PRECISION
                     90: *          If the eigenvalue is real, then WI is zero.  If the
                     91: *          eigenvalue is complex, then WI is SCALE1 times the imaginary
                     92: *          part of the eigenvalues.  WI will always be non-negative.
                     93: *
                     94: *  =====================================================================
                     95: *
                     96: *     .. Parameters ..
                     97:       DOUBLE PRECISION   ZERO, ONE, TWO
                     98:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                     99:       DOUBLE PRECISION   HALF
                    100:       PARAMETER          ( HALF = ONE / TWO )
                    101:       DOUBLE PRECISION   FUZZY1
                    102:       PARAMETER          ( FUZZY1 = ONE+1.0D-5 )
                    103: *     ..
                    104: *     .. Local Scalars ..
                    105:       DOUBLE PRECISION   A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
                    106:      $                   AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
                    107:      $                   BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
                    108:      $                   DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
                    109:      $                   SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
                    110:      $                   WSCALE, WSIZE, WSMALL
                    111: *     ..
                    112: *     .. Intrinsic Functions ..
                    113:       INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
                    114: *     ..
                    115: *     .. Executable Statements ..
                    116: *
                    117:       RTMIN = SQRT( SAFMIN )
                    118:       RTMAX = ONE / RTMIN
                    119:       SAFMAX = ONE / SAFMIN
                    120: *
                    121: *     Scale A
                    122: *
                    123:       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
                    124:      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
                    125:       ASCALE = ONE / ANORM
                    126:       A11 = ASCALE*A( 1, 1 )
                    127:       A21 = ASCALE*A( 2, 1 )
                    128:       A12 = ASCALE*A( 1, 2 )
                    129:       A22 = ASCALE*A( 2, 2 )
                    130: *
                    131: *     Perturb B if necessary to insure non-singularity
                    132: *
                    133:       B11 = B( 1, 1 )
                    134:       B12 = B( 1, 2 )
                    135:       B22 = B( 2, 2 )
                    136:       BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
                    137:       IF( ABS( B11 ).LT.BMIN )
                    138:      $   B11 = SIGN( BMIN, B11 )
                    139:       IF( ABS( B22 ).LT.BMIN )
                    140:      $   B22 = SIGN( BMIN, B22 )
                    141: *
                    142: *     Scale B
                    143: *
                    144:       BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
                    145:       BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
                    146:       BSCALE = ONE / BSIZE
                    147:       B11 = B11*BSCALE
                    148:       B12 = B12*BSCALE
                    149:       B22 = B22*BSCALE
                    150: *
                    151: *     Compute larger eigenvalue by method described by C. van Loan
                    152: *
                    153: *     ( AS is A shifted by -SHIFT*B )
                    154: *
                    155:       BINV11 = ONE / B11
                    156:       BINV22 = ONE / B22
                    157:       S1 = A11*BINV11
                    158:       S2 = A22*BINV22
                    159:       IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
                    160:          AS12 = A12 - S1*B12
                    161:          AS22 = A22 - S1*B22
                    162:          SS = A21*( BINV11*BINV22 )
                    163:          ABI22 = AS22*BINV22 - SS*B12
                    164:          PP = HALF*ABI22
                    165:          SHIFT = S1
                    166:       ELSE
                    167:          AS12 = A12 - S2*B12
                    168:          AS11 = A11 - S2*B11
                    169:          SS = A21*( BINV11*BINV22 )
                    170:          ABI22 = -SS*B12
                    171:          PP = HALF*( AS11*BINV11+ABI22 )
                    172:          SHIFT = S2
                    173:       END IF
                    174:       QQ = SS*AS12
                    175:       IF( ABS( PP*RTMIN ).GE.ONE ) THEN
                    176:          DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
                    177:          R = SQRT( ABS( DISCR ) )*RTMAX
                    178:       ELSE
                    179:          IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
                    180:             DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
                    181:             R = SQRT( ABS( DISCR ) )*RTMIN
                    182:          ELSE
                    183:             DISCR = PP**2 + QQ
                    184:             R = SQRT( ABS( DISCR ) )
                    185:          END IF
                    186:       END IF
                    187: *
                    188: *     Note: the test of R in the following IF is to cover the case when
                    189: *           DISCR is small and negative and is flushed to zero during
                    190: *           the calculation of R.  On machines which have a consistent
                    191: *           flush-to-zero threshhold and handle numbers above that
                    192: *           threshhold correctly, it would not be necessary.
                    193: *
                    194:       IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
                    195:          SUM = PP + SIGN( R, PP )
                    196:          DIFF = PP - SIGN( R, PP )
                    197:          WBIG = SHIFT + SUM
                    198: *
                    199: *        Compute smaller eigenvalue
                    200: *
                    201:          WSMALL = SHIFT + DIFF
                    202:          IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
                    203:             WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
                    204:             WSMALL = WDET / WBIG
                    205:          END IF
                    206: *
                    207: *        Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
                    208: *        for WR1.
                    209: *
                    210:          IF( PP.GT.ABI22 ) THEN
                    211:             WR1 = MIN( WBIG, WSMALL )
                    212:             WR2 = MAX( WBIG, WSMALL )
                    213:          ELSE
                    214:             WR1 = MAX( WBIG, WSMALL )
                    215:             WR2 = MIN( WBIG, WSMALL )
                    216:          END IF
                    217:          WI = ZERO
                    218:       ELSE
                    219: *
                    220: *        Complex eigenvalues
                    221: *
                    222:          WR1 = SHIFT + PP
                    223:          WR2 = WR1
                    224:          WI = R
                    225:       END IF
                    226: *
                    227: *     Further scaling to avoid underflow and overflow in computing
                    228: *     SCALE1 and overflow in computing w*B.
                    229: *
                    230: *     This scale factor (WSCALE) is bounded from above using C1 and C2,
                    231: *     and from below using C3 and C4.
                    232: *        C1 implements the condition  s A  must never overflow.
                    233: *        C2 implements the condition  w B  must never overflow.
                    234: *        C3, with C2,
                    235: *           implement the condition that s A - w B must never overflow.
                    236: *        C4 implements the condition  s    should not underflow.
                    237: *        C5 implements the condition  max(s,|w|) should be at least 2.
                    238: *
                    239:       C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
                    240:       C2 = SAFMIN*MAX( ONE, BNORM )
                    241:       C3 = BSIZE*SAFMIN
                    242:       IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
                    243:          C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
                    244:       ELSE
                    245:          C4 = ONE
                    246:       END IF
                    247:       IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
                    248:          C5 = MIN( ONE, ASCALE*BSIZE )
                    249:       ELSE
                    250:          C5 = ONE
                    251:       END IF
                    252: *
                    253: *     Scale first eigenvalue
                    254: *
                    255:       WABS = ABS( WR1 ) + ABS( WI )
                    256:       WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
                    257:      $        MIN( C4, HALF*MAX( WABS, C5 ) ) )
                    258:       IF( WSIZE.NE.ONE ) THEN
                    259:          WSCALE = ONE / WSIZE
                    260:          IF( WSIZE.GT.ONE ) THEN
                    261:             SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
                    262:      $               MIN( ASCALE, BSIZE )
                    263:          ELSE
                    264:             SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
                    265:      $               MAX( ASCALE, BSIZE )
                    266:          END IF
                    267:          WR1 = WR1*WSCALE
                    268:          IF( WI.NE.ZERO ) THEN
                    269:             WI = WI*WSCALE
                    270:             WR2 = WR1
                    271:             SCALE2 = SCALE1
                    272:          END IF
                    273:       ELSE
                    274:          SCALE1 = ASCALE*BSIZE
                    275:          SCALE2 = SCALE1
                    276:       END IF
                    277: *
                    278: *     Scale second eigenvalue (if real)
                    279: *
                    280:       IF( WI.EQ.ZERO ) THEN
                    281:          WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
                    282:      $           MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
                    283:          IF( WSIZE.NE.ONE ) THEN
                    284:             WSCALE = ONE / WSIZE
                    285:             IF( WSIZE.GT.ONE ) THEN
                    286:                SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
                    287:      $                  MIN( ASCALE, BSIZE )
                    288:             ELSE
                    289:                SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
                    290:      $                  MAX( ASCALE, BSIZE )
                    291:             END IF
                    292:             WR2 = WR2*WSCALE
                    293:          ELSE
                    294:             SCALE2 = ASCALE*BSIZE
                    295:          END IF
                    296:       END IF
                    297: *
                    298: *     End of DLAG2
                    299: *
                    300:       RETURN
                    301:       END

CVSweb interface <joel.bertrand@systella.fr>