Annotation of rpl/lapack/lapack/dlag2.f, revision 1.19

1.11      bertrand    1: *> \brief \b DLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DLAG2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlag2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlag2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlag2.f">
1.8       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
                     22: *                         WR2, WI )
1.16      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            LDA, LDB
                     26: *       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                     30: *       ..
1.16      bertrand   31: *
1.8       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
                     39: *> problem  A - w B, with scaling as necessary to avoid over-/underflow.
                     40: *>
                     41: *> The scaling factor "s" results in a modified eigenvalue equation
                     42: *>
                     43: *>     s A - w B
                     44: *>
                     45: *> where  s  is a non-negative scaling factor chosen so that  w,  w B,
                     46: *> and  s A  do not overflow and, if possible, do not underflow, either.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] A
                     53: *> \verbatim
                     54: *>          A is DOUBLE PRECISION array, dimension (LDA, 2)
                     55: *>          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm
                     56: *>          is less than 1/SAFMIN.  Entries less than
                     57: *>          sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] LDA
                     61: *> \verbatim
                     62: *>          LDA is INTEGER
                     63: *>          The leading dimension of the array A.  LDA >= 2.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] B
                     67: *> \verbatim
                     68: *>          B is DOUBLE PRECISION array, dimension (LDB, 2)
                     69: *>          On entry, the 2 x 2 upper triangular matrix B.  It is
                     70: *>          assumed that the one-norm of B is less than 1/SAFMIN.  The
                     71: *>          diagonals should be at least sqrt(SAFMIN) times the largest
                     72: *>          element of B (in absolute value); if a diagonal is smaller
                     73: *>          than that, then  +/- sqrt(SAFMIN) will be used instead of
                     74: *>          that diagonal.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] LDB
                     78: *> \verbatim
                     79: *>          LDB is INTEGER
                     80: *>          The leading dimension of the array B.  LDB >= 2.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] SAFMIN
                     84: *> \verbatim
                     85: *>          SAFMIN is DOUBLE PRECISION
                     86: *>          The smallest positive number s.t. 1/SAFMIN does not
                     87: *>          overflow.  (This should always be DLAMCH('S') -- it is an
                     88: *>          argument in order to avoid having to call DLAMCH frequently.)
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] SCALE1
                     92: *> \verbatim
                     93: *>          SCALE1 is DOUBLE PRECISION
                     94: *>          A scaling factor used to avoid over-/underflow in the
                     95: *>          eigenvalue equation which defines the first eigenvalue.  If
                     96: *>          the eigenvalues are complex, then the eigenvalues are
                     97: *>          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the
                     98: *>          exponent range of the machine), SCALE1=SCALE2, and SCALE1
                     99: *>          will always be positive.  If the eigenvalues are real, then
                    100: *>          the first (real) eigenvalue is  WR1 / SCALE1 , but this may
                    101: *>          overflow or underflow, and in fact, SCALE1 may be zero or
1.14      bertrand  102: *>          less than the underflow threshold if the exact eigenvalue
1.8       bertrand  103: *>          is sufficiently large.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[out] SCALE2
                    107: *> \verbatim
                    108: *>          SCALE2 is DOUBLE PRECISION
                    109: *>          A scaling factor used to avoid over-/underflow in the
                    110: *>          eigenvalue equation which defines the second eigenvalue.  If
                    111: *>          the eigenvalues are complex, then SCALE2=SCALE1.  If the
                    112: *>          eigenvalues are real, then the second (real) eigenvalue is
                    113: *>          WR2 / SCALE2 , but this may overflow or underflow, and in
                    114: *>          fact, SCALE2 may be zero or less than the underflow
1.14      bertrand  115: *>          threshold if the exact eigenvalue is sufficiently large.
1.8       bertrand  116: *> \endverbatim
                    117: *>
                    118: *> \param[out] WR1
                    119: *> \verbatim
                    120: *>          WR1 is DOUBLE PRECISION
                    121: *>          If the eigenvalue is real, then WR1 is SCALE1 times the
                    122: *>          eigenvalue closest to the (2,2) element of A B**(-1).  If the
                    123: *>          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
                    124: *>          part of the eigenvalues.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] WR2
                    128: *> \verbatim
                    129: *>          WR2 is DOUBLE PRECISION
                    130: *>          If the eigenvalue is real, then WR2 is SCALE2 times the
                    131: *>          other eigenvalue.  If the eigenvalue is complex, then
                    132: *>          WR1=WR2 is SCALE1 times the real part of the eigenvalues.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[out] WI
                    136: *> \verbatim
                    137: *>          WI is DOUBLE PRECISION
                    138: *>          If the eigenvalue is real, then WI is zero.  If the
                    139: *>          eigenvalue is complex, then WI is SCALE1 times the imaginary
                    140: *>          part of the eigenvalues.  WI will always be non-negative.
                    141: *> \endverbatim
                    142: *
                    143: *  Authors:
                    144: *  ========
                    145: *
1.16      bertrand  146: *> \author Univ. of Tennessee
                    147: *> \author Univ. of California Berkeley
                    148: *> \author Univ. of Colorado Denver
                    149: *> \author NAG Ltd.
1.8       bertrand  150: *
                    151: *> \ingroup doubleOTHERauxiliary
                    152: *
                    153: *  =====================================================================
1.1       bertrand  154:       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
                    155:      $                  WR2, WI )
                    156: *
1.19    ! bertrand  157: *  -- LAPACK auxiliary routine --
1.1       bertrand  158: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    159: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    160: *
                    161: *     .. Scalar Arguments ..
                    162:       INTEGER            LDA, LDB
                    163:       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
                    164: *     ..
                    165: *     .. Array Arguments ..
                    166:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
                    167: *     ..
                    168: *
                    169: *  =====================================================================
                    170: *
                    171: *     .. Parameters ..
                    172:       DOUBLE PRECISION   ZERO, ONE, TWO
                    173:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    174:       DOUBLE PRECISION   HALF
                    175:       PARAMETER          ( HALF = ONE / TWO )
                    176:       DOUBLE PRECISION   FUZZY1
                    177:       PARAMETER          ( FUZZY1 = ONE+1.0D-5 )
                    178: *     ..
                    179: *     .. Local Scalars ..
                    180:       DOUBLE PRECISION   A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
                    181:      $                   AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
                    182:      $                   BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
                    183:      $                   DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
                    184:      $                   SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
                    185:      $                   WSCALE, WSIZE, WSMALL
                    186: *     ..
                    187: *     .. Intrinsic Functions ..
                    188:       INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
                    189: *     ..
                    190: *     .. Executable Statements ..
                    191: *
                    192:       RTMIN = SQRT( SAFMIN )
                    193:       RTMAX = ONE / RTMIN
                    194:       SAFMAX = ONE / SAFMIN
                    195: *
                    196: *     Scale A
                    197: *
                    198:       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
                    199:      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
                    200:       ASCALE = ONE / ANORM
                    201:       A11 = ASCALE*A( 1, 1 )
                    202:       A21 = ASCALE*A( 2, 1 )
                    203:       A12 = ASCALE*A( 1, 2 )
                    204:       A22 = ASCALE*A( 2, 2 )
                    205: *
                    206: *     Perturb B if necessary to insure non-singularity
                    207: *
                    208:       B11 = B( 1, 1 )
                    209:       B12 = B( 1, 2 )
                    210:       B22 = B( 2, 2 )
                    211:       BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
                    212:       IF( ABS( B11 ).LT.BMIN )
                    213:      $   B11 = SIGN( BMIN, B11 )
                    214:       IF( ABS( B22 ).LT.BMIN )
                    215:      $   B22 = SIGN( BMIN, B22 )
                    216: *
                    217: *     Scale B
                    218: *
                    219:       BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
                    220:       BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
                    221:       BSCALE = ONE / BSIZE
                    222:       B11 = B11*BSCALE
                    223:       B12 = B12*BSCALE
                    224:       B22 = B22*BSCALE
                    225: *
                    226: *     Compute larger eigenvalue by method described by C. van Loan
                    227: *
                    228: *     ( AS is A shifted by -SHIFT*B )
                    229: *
                    230:       BINV11 = ONE / B11
                    231:       BINV22 = ONE / B22
                    232:       S1 = A11*BINV11
                    233:       S2 = A22*BINV22
                    234:       IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
                    235:          AS12 = A12 - S1*B12
                    236:          AS22 = A22 - S1*B22
                    237:          SS = A21*( BINV11*BINV22 )
                    238:          ABI22 = AS22*BINV22 - SS*B12
                    239:          PP = HALF*ABI22
                    240:          SHIFT = S1
                    241:       ELSE
                    242:          AS12 = A12 - S2*B12
                    243:          AS11 = A11 - S2*B11
                    244:          SS = A21*( BINV11*BINV22 )
                    245:          ABI22 = -SS*B12
                    246:          PP = HALF*( AS11*BINV11+ABI22 )
                    247:          SHIFT = S2
                    248:       END IF
                    249:       QQ = SS*AS12
                    250:       IF( ABS( PP*RTMIN ).GE.ONE ) THEN
                    251:          DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
                    252:          R = SQRT( ABS( DISCR ) )*RTMAX
                    253:       ELSE
                    254:          IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
                    255:             DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
                    256:             R = SQRT( ABS( DISCR ) )*RTMIN
                    257:          ELSE
                    258:             DISCR = PP**2 + QQ
                    259:             R = SQRT( ABS( DISCR ) )
                    260:          END IF
                    261:       END IF
                    262: *
                    263: *     Note: the test of R in the following IF is to cover the case when
                    264: *           DISCR is small and negative and is flushed to zero during
                    265: *           the calculation of R.  On machines which have a consistent
1.14      bertrand  266: *           flush-to-zero threshold and handle numbers above that
                    267: *           threshold correctly, it would not be necessary.
1.1       bertrand  268: *
                    269:       IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
                    270:          SUM = PP + SIGN( R, PP )
                    271:          DIFF = PP - SIGN( R, PP )
                    272:          WBIG = SHIFT + SUM
                    273: *
                    274: *        Compute smaller eigenvalue
                    275: *
                    276:          WSMALL = SHIFT + DIFF
                    277:          IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
                    278:             WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
                    279:             WSMALL = WDET / WBIG
                    280:          END IF
                    281: *
                    282: *        Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
                    283: *        for WR1.
                    284: *
                    285:          IF( PP.GT.ABI22 ) THEN
                    286:             WR1 = MIN( WBIG, WSMALL )
                    287:             WR2 = MAX( WBIG, WSMALL )
                    288:          ELSE
                    289:             WR1 = MAX( WBIG, WSMALL )
                    290:             WR2 = MIN( WBIG, WSMALL )
                    291:          END IF
                    292:          WI = ZERO
                    293:       ELSE
                    294: *
                    295: *        Complex eigenvalues
                    296: *
                    297:          WR1 = SHIFT + PP
                    298:          WR2 = WR1
                    299:          WI = R
                    300:       END IF
                    301: *
                    302: *     Further scaling to avoid underflow and overflow in computing
                    303: *     SCALE1 and overflow in computing w*B.
                    304: *
                    305: *     This scale factor (WSCALE) is bounded from above using C1 and C2,
                    306: *     and from below using C3 and C4.
                    307: *        C1 implements the condition  s A  must never overflow.
                    308: *        C2 implements the condition  w B  must never overflow.
                    309: *        C3, with C2,
                    310: *           implement the condition that s A - w B must never overflow.
                    311: *        C4 implements the condition  s    should not underflow.
                    312: *        C5 implements the condition  max(s,|w|) should be at least 2.
                    313: *
                    314:       C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
                    315:       C2 = SAFMIN*MAX( ONE, BNORM )
                    316:       C3 = BSIZE*SAFMIN
                    317:       IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
                    318:          C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
                    319:       ELSE
                    320:          C4 = ONE
                    321:       END IF
                    322:       IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
                    323:          C5 = MIN( ONE, ASCALE*BSIZE )
                    324:       ELSE
                    325:          C5 = ONE
                    326:       END IF
                    327: *
                    328: *     Scale first eigenvalue
                    329: *
                    330:       WABS = ABS( WR1 ) + ABS( WI )
                    331:       WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
                    332:      $        MIN( C4, HALF*MAX( WABS, C5 ) ) )
                    333:       IF( WSIZE.NE.ONE ) THEN
                    334:          WSCALE = ONE / WSIZE
                    335:          IF( WSIZE.GT.ONE ) THEN
                    336:             SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
                    337:      $               MIN( ASCALE, BSIZE )
                    338:          ELSE
                    339:             SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
                    340:      $               MAX( ASCALE, BSIZE )
                    341:          END IF
                    342:          WR1 = WR1*WSCALE
                    343:          IF( WI.NE.ZERO ) THEN
                    344:             WI = WI*WSCALE
                    345:             WR2 = WR1
                    346:             SCALE2 = SCALE1
                    347:          END IF
                    348:       ELSE
                    349:          SCALE1 = ASCALE*BSIZE
                    350:          SCALE2 = SCALE1
                    351:       END IF
                    352: *
                    353: *     Scale second eigenvalue (if real)
                    354: *
                    355:       IF( WI.EQ.ZERO ) THEN
                    356:          WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
                    357:      $           MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
                    358:          IF( WSIZE.NE.ONE ) THEN
                    359:             WSCALE = ONE / WSIZE
                    360:             IF( WSIZE.GT.ONE ) THEN
                    361:                SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
                    362:      $                  MIN( ASCALE, BSIZE )
                    363:             ELSE
                    364:                SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
                    365:      $                  MAX( ASCALE, BSIZE )
                    366:             END IF
                    367:             WR2 = WR2*WSCALE
                    368:          ELSE
                    369:             SCALE2 = ASCALE*BSIZE
                    370:          END IF
                    371:       END IF
                    372: *
                    373: *     End of DLAG2
                    374: *
                    375:       RETURN
                    376:       END

CVSweb interface <joel.bertrand@systella.fr>