Annotation of rpl/lapack/lapack/dlag2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
        !             2:      $                  WR2, WI )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            LDA, LDB
        !            11:       DOUBLE PRECISION   SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
        !            21: *  problem  A - w B, with scaling as necessary to avoid over-/underflow.
        !            22: *
        !            23: *  The scaling factor "s" results in a modified eigenvalue equation
        !            24: *
        !            25: *      s A - w B
        !            26: *
        !            27: *  where  s  is a non-negative scaling factor chosen so that  w,  w B,
        !            28: *  and  s A  do not overflow and, if possible, do not underflow, either.
        !            29: *
        !            30: *  Arguments
        !            31: *  =========
        !            32: *
        !            33: *  A       (input) DOUBLE PRECISION array, dimension (LDA, 2)
        !            34: *          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm
        !            35: *          is less than 1/SAFMIN.  Entries less than
        !            36: *          sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
        !            37: *
        !            38: *  LDA     (input) INTEGER
        !            39: *          The leading dimension of the array A.  LDA >= 2.
        !            40: *
        !            41: *  B       (input) DOUBLE PRECISION array, dimension (LDB, 2)
        !            42: *          On entry, the 2 x 2 upper triangular matrix B.  It is
        !            43: *          assumed that the one-norm of B is less than 1/SAFMIN.  The
        !            44: *          diagonals should be at least sqrt(SAFMIN) times the largest
        !            45: *          element of B (in absolute value); if a diagonal is smaller
        !            46: *          than that, then  +/- sqrt(SAFMIN) will be used instead of
        !            47: *          that diagonal.
        !            48: *
        !            49: *  LDB     (input) INTEGER
        !            50: *          The leading dimension of the array B.  LDB >= 2.
        !            51: *
        !            52: *  SAFMIN  (input) DOUBLE PRECISION
        !            53: *          The smallest positive number s.t. 1/SAFMIN does not
        !            54: *          overflow.  (This should always be DLAMCH('S') -- it is an
        !            55: *          argument in order to avoid having to call DLAMCH frequently.)
        !            56: *
        !            57: *  SCALE1  (output) DOUBLE PRECISION
        !            58: *          A scaling factor used to avoid over-/underflow in the
        !            59: *          eigenvalue equation which defines the first eigenvalue.  If
        !            60: *          the eigenvalues are complex, then the eigenvalues are
        !            61: *          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the
        !            62: *          exponent range of the machine), SCALE1=SCALE2, and SCALE1
        !            63: *          will always be positive.  If the eigenvalues are real, then
        !            64: *          the first (real) eigenvalue is  WR1 / SCALE1 , but this may
        !            65: *          overflow or underflow, and in fact, SCALE1 may be zero or
        !            66: *          less than the underflow threshhold if the exact eigenvalue
        !            67: *          is sufficiently large.
        !            68: *
        !            69: *  SCALE2  (output) DOUBLE PRECISION
        !            70: *          A scaling factor used to avoid over-/underflow in the
        !            71: *          eigenvalue equation which defines the second eigenvalue.  If
        !            72: *          the eigenvalues are complex, then SCALE2=SCALE1.  If the
        !            73: *          eigenvalues are real, then the second (real) eigenvalue is
        !            74: *          WR2 / SCALE2 , but this may overflow or underflow, and in
        !            75: *          fact, SCALE2 may be zero or less than the underflow
        !            76: *          threshhold if the exact eigenvalue is sufficiently large.
        !            77: *
        !            78: *  WR1     (output) DOUBLE PRECISION
        !            79: *          If the eigenvalue is real, then WR1 is SCALE1 times the
        !            80: *          eigenvalue closest to the (2,2) element of A B**(-1).  If the
        !            81: *          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
        !            82: *          part of the eigenvalues.
        !            83: *
        !            84: *  WR2     (output) DOUBLE PRECISION
        !            85: *          If the eigenvalue is real, then WR2 is SCALE2 times the
        !            86: *          other eigenvalue.  If the eigenvalue is complex, then
        !            87: *          WR1=WR2 is SCALE1 times the real part of the eigenvalues.
        !            88: *
        !            89: *  WI      (output) DOUBLE PRECISION
        !            90: *          If the eigenvalue is real, then WI is zero.  If the
        !            91: *          eigenvalue is complex, then WI is SCALE1 times the imaginary
        !            92: *          part of the eigenvalues.  WI will always be non-negative.
        !            93: *
        !            94: *  =====================================================================
        !            95: *
        !            96: *     .. Parameters ..
        !            97:       DOUBLE PRECISION   ZERO, ONE, TWO
        !            98:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
        !            99:       DOUBLE PRECISION   HALF
        !           100:       PARAMETER          ( HALF = ONE / TWO )
        !           101:       DOUBLE PRECISION   FUZZY1
        !           102:       PARAMETER          ( FUZZY1 = ONE+1.0D-5 )
        !           103: *     ..
        !           104: *     .. Local Scalars ..
        !           105:       DOUBLE PRECISION   A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
        !           106:      $                   AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
        !           107:      $                   BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
        !           108:      $                   DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
        !           109:      $                   SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
        !           110:      $                   WSCALE, WSIZE, WSMALL
        !           111: *     ..
        !           112: *     .. Intrinsic Functions ..
        !           113:       INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
        !           114: *     ..
        !           115: *     .. Executable Statements ..
        !           116: *
        !           117:       RTMIN = SQRT( SAFMIN )
        !           118:       RTMAX = ONE / RTMIN
        !           119:       SAFMAX = ONE / SAFMIN
        !           120: *
        !           121: *     Scale A
        !           122: *
        !           123:       ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
        !           124:      $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
        !           125:       ASCALE = ONE / ANORM
        !           126:       A11 = ASCALE*A( 1, 1 )
        !           127:       A21 = ASCALE*A( 2, 1 )
        !           128:       A12 = ASCALE*A( 1, 2 )
        !           129:       A22 = ASCALE*A( 2, 2 )
        !           130: *
        !           131: *     Perturb B if necessary to insure non-singularity
        !           132: *
        !           133:       B11 = B( 1, 1 )
        !           134:       B12 = B( 1, 2 )
        !           135:       B22 = B( 2, 2 )
        !           136:       BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
        !           137:       IF( ABS( B11 ).LT.BMIN )
        !           138:      $   B11 = SIGN( BMIN, B11 )
        !           139:       IF( ABS( B22 ).LT.BMIN )
        !           140:      $   B22 = SIGN( BMIN, B22 )
        !           141: *
        !           142: *     Scale B
        !           143: *
        !           144:       BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
        !           145:       BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
        !           146:       BSCALE = ONE / BSIZE
        !           147:       B11 = B11*BSCALE
        !           148:       B12 = B12*BSCALE
        !           149:       B22 = B22*BSCALE
        !           150: *
        !           151: *     Compute larger eigenvalue by method described by C. van Loan
        !           152: *
        !           153: *     ( AS is A shifted by -SHIFT*B )
        !           154: *
        !           155:       BINV11 = ONE / B11
        !           156:       BINV22 = ONE / B22
        !           157:       S1 = A11*BINV11
        !           158:       S2 = A22*BINV22
        !           159:       IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
        !           160:          AS12 = A12 - S1*B12
        !           161:          AS22 = A22 - S1*B22
        !           162:          SS = A21*( BINV11*BINV22 )
        !           163:          ABI22 = AS22*BINV22 - SS*B12
        !           164:          PP = HALF*ABI22
        !           165:          SHIFT = S1
        !           166:       ELSE
        !           167:          AS12 = A12 - S2*B12
        !           168:          AS11 = A11 - S2*B11
        !           169:          SS = A21*( BINV11*BINV22 )
        !           170:          ABI22 = -SS*B12
        !           171:          PP = HALF*( AS11*BINV11+ABI22 )
        !           172:          SHIFT = S2
        !           173:       END IF
        !           174:       QQ = SS*AS12
        !           175:       IF( ABS( PP*RTMIN ).GE.ONE ) THEN
        !           176:          DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
        !           177:          R = SQRT( ABS( DISCR ) )*RTMAX
        !           178:       ELSE
        !           179:          IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
        !           180:             DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
        !           181:             R = SQRT( ABS( DISCR ) )*RTMIN
        !           182:          ELSE
        !           183:             DISCR = PP**2 + QQ
        !           184:             R = SQRT( ABS( DISCR ) )
        !           185:          END IF
        !           186:       END IF
        !           187: *
        !           188: *     Note: the test of R in the following IF is to cover the case when
        !           189: *           DISCR is small and negative and is flushed to zero during
        !           190: *           the calculation of R.  On machines which have a consistent
        !           191: *           flush-to-zero threshhold and handle numbers above that
        !           192: *           threshhold correctly, it would not be necessary.
        !           193: *
        !           194:       IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
        !           195:          SUM = PP + SIGN( R, PP )
        !           196:          DIFF = PP - SIGN( R, PP )
        !           197:          WBIG = SHIFT + SUM
        !           198: *
        !           199: *        Compute smaller eigenvalue
        !           200: *
        !           201:          WSMALL = SHIFT + DIFF
        !           202:          IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
        !           203:             WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
        !           204:             WSMALL = WDET / WBIG
        !           205:          END IF
        !           206: *
        !           207: *        Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
        !           208: *        for WR1.
        !           209: *
        !           210:          IF( PP.GT.ABI22 ) THEN
        !           211:             WR1 = MIN( WBIG, WSMALL )
        !           212:             WR2 = MAX( WBIG, WSMALL )
        !           213:          ELSE
        !           214:             WR1 = MAX( WBIG, WSMALL )
        !           215:             WR2 = MIN( WBIG, WSMALL )
        !           216:          END IF
        !           217:          WI = ZERO
        !           218:       ELSE
        !           219: *
        !           220: *        Complex eigenvalues
        !           221: *
        !           222:          WR1 = SHIFT + PP
        !           223:          WR2 = WR1
        !           224:          WI = R
        !           225:       END IF
        !           226: *
        !           227: *     Further scaling to avoid underflow and overflow in computing
        !           228: *     SCALE1 and overflow in computing w*B.
        !           229: *
        !           230: *     This scale factor (WSCALE) is bounded from above using C1 and C2,
        !           231: *     and from below using C3 and C4.
        !           232: *        C1 implements the condition  s A  must never overflow.
        !           233: *        C2 implements the condition  w B  must never overflow.
        !           234: *        C3, with C2,
        !           235: *           implement the condition that s A - w B must never overflow.
        !           236: *        C4 implements the condition  s    should not underflow.
        !           237: *        C5 implements the condition  max(s,|w|) should be at least 2.
        !           238: *
        !           239:       C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
        !           240:       C2 = SAFMIN*MAX( ONE, BNORM )
        !           241:       C3 = BSIZE*SAFMIN
        !           242:       IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
        !           243:          C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
        !           244:       ELSE
        !           245:          C4 = ONE
        !           246:       END IF
        !           247:       IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
        !           248:          C5 = MIN( ONE, ASCALE*BSIZE )
        !           249:       ELSE
        !           250:          C5 = ONE
        !           251:       END IF
        !           252: *
        !           253: *     Scale first eigenvalue
        !           254: *
        !           255:       WABS = ABS( WR1 ) + ABS( WI )
        !           256:       WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
        !           257:      $        MIN( C4, HALF*MAX( WABS, C5 ) ) )
        !           258:       IF( WSIZE.NE.ONE ) THEN
        !           259:          WSCALE = ONE / WSIZE
        !           260:          IF( WSIZE.GT.ONE ) THEN
        !           261:             SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
        !           262:      $               MIN( ASCALE, BSIZE )
        !           263:          ELSE
        !           264:             SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
        !           265:      $               MAX( ASCALE, BSIZE )
        !           266:          END IF
        !           267:          WR1 = WR1*WSCALE
        !           268:          IF( WI.NE.ZERO ) THEN
        !           269:             WI = WI*WSCALE
        !           270:             WR2 = WR1
        !           271:             SCALE2 = SCALE1
        !           272:          END IF
        !           273:       ELSE
        !           274:          SCALE1 = ASCALE*BSIZE
        !           275:          SCALE2 = SCALE1
        !           276:       END IF
        !           277: *
        !           278: *     Scale second eigenvalue (if real)
        !           279: *
        !           280:       IF( WI.EQ.ZERO ) THEN
        !           281:          WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
        !           282:      $           MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
        !           283:          IF( WSIZE.NE.ONE ) THEN
        !           284:             WSCALE = ONE / WSIZE
        !           285:             IF( WSIZE.GT.ONE ) THEN
        !           286:                SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
        !           287:      $                  MIN( ASCALE, BSIZE )
        !           288:             ELSE
        !           289:                SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
        !           290:      $                  MAX( ASCALE, BSIZE )
        !           291:             END IF
        !           292:             WR2 = WR2*WSCALE
        !           293:          ELSE
        !           294:             SCALE2 = ASCALE*BSIZE
        !           295:          END IF
        !           296:       END IF
        !           297: *
        !           298: *     End of DLAG2
        !           299: *
        !           300:       RETURN
        !           301:       END

CVSweb interface <joel.bertrand@systella.fr>