Annotation of rpl/lapack/lapack/dlaexc.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK,
                      2:      $                   INFO )
                      3: *
                      4: *  -- LAPACK auxiliary routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       LOGICAL            WANTQ
                     11:       INTEGER            INFO, J1, LDQ, LDT, N, N1, N2
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WORK( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
                     21: *  an upper quasi-triangular matrix T by an orthogonal similarity
                     22: *  transformation.
                     23: *
                     24: *  T must be in Schur canonical form, that is, block upper triangular
                     25: *  with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
                     26: *  has its diagonal elemnts equal and its off-diagonal elements of
                     27: *  opposite sign.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  WANTQ   (input) LOGICAL
                     33: *          = .TRUE. : accumulate the transformation in the matrix Q;
                     34: *          = .FALSE.: do not accumulate the transformation.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The order of the matrix T. N >= 0.
                     38: *
                     39: *  T       (input/output) DOUBLE PRECISION array, dimension (LDT,N)
                     40: *          On entry, the upper quasi-triangular matrix T, in Schur
                     41: *          canonical form.
                     42: *          On exit, the updated matrix T, again in Schur canonical form.
                     43: *
                     44: *  LDT     (input)  INTEGER
                     45: *          The leading dimension of the array T. LDT >= max(1,N).
                     46: *
                     47: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
                     48: *          On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
                     49: *          On exit, if WANTQ is .TRUE., the updated matrix Q.
                     50: *          If WANTQ is .FALSE., Q is not referenced.
                     51: *
                     52: *  LDQ     (input) INTEGER
                     53: *          The leading dimension of the array Q.
                     54: *          LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.
                     55: *
                     56: *  J1      (input) INTEGER
                     57: *          The index of the first row of the first block T11.
                     58: *
                     59: *  N1      (input) INTEGER
                     60: *          The order of the first block T11. N1 = 0, 1 or 2.
                     61: *
                     62: *  N2      (input) INTEGER
                     63: *          The order of the second block T22. N2 = 0, 1 or 2.
                     64: *
                     65: *  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
                     66: *
                     67: *  INFO    (output) INTEGER
                     68: *          = 0: successful exit
                     69: *          = 1: the transformed matrix T would be too far from Schur
                     70: *               form; the blocks are not swapped and T and Q are
                     71: *               unchanged.
                     72: *
                     73: *  =====================================================================
                     74: *
                     75: *     .. Parameters ..
                     76:       DOUBLE PRECISION   ZERO, ONE
                     77:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                     78:       DOUBLE PRECISION   TEN
                     79:       PARAMETER          ( TEN = 1.0D+1 )
                     80:       INTEGER            LDD, LDX
                     81:       PARAMETER          ( LDD = 4, LDX = 2 )
                     82: *     ..
                     83: *     .. Local Scalars ..
                     84:       INTEGER            IERR, J2, J3, J4, K, ND
                     85:       DOUBLE PRECISION   CS, DNORM, EPS, SCALE, SMLNUM, SN, T11, T22,
                     86:      $                   T33, TAU, TAU1, TAU2, TEMP, THRESH, WI1, WI2,
                     87:      $                   WR1, WR2, XNORM
                     88: *     ..
                     89: *     .. Local Arrays ..
                     90:       DOUBLE PRECISION   D( LDD, 4 ), U( 3 ), U1( 3 ), U2( 3 ),
                     91:      $                   X( LDX, 2 )
                     92: *     ..
                     93: *     .. External Functions ..
                     94:       DOUBLE PRECISION   DLAMCH, DLANGE
                     95:       EXTERNAL           DLAMCH, DLANGE
                     96: *     ..
                     97: *     .. External Subroutines ..
                     98:       EXTERNAL           DLACPY, DLANV2, DLARFG, DLARFX, DLARTG, DLASY2,
                     99:      $                   DROT
                    100: *     ..
                    101: *     .. Intrinsic Functions ..
                    102:       INTRINSIC          ABS, MAX
                    103: *     ..
                    104: *     .. Executable Statements ..
                    105: *
                    106:       INFO = 0
                    107: *
                    108: *     Quick return if possible
                    109: *
                    110:       IF( N.EQ.0 .OR. N1.EQ.0 .OR. N2.EQ.0 )
                    111:      $   RETURN
                    112:       IF( J1+N1.GT.N )
                    113:      $   RETURN
                    114: *
                    115:       J2 = J1 + 1
                    116:       J3 = J1 + 2
                    117:       J4 = J1 + 3
                    118: *
                    119:       IF( N1.EQ.1 .AND. N2.EQ.1 ) THEN
                    120: *
                    121: *        Swap two 1-by-1 blocks.
                    122: *
                    123:          T11 = T( J1, J1 )
                    124:          T22 = T( J2, J2 )
                    125: *
                    126: *        Determine the transformation to perform the interchange.
                    127: *
                    128:          CALL DLARTG( T( J1, J2 ), T22-T11, CS, SN, TEMP )
                    129: *
                    130: *        Apply transformation to the matrix T.
                    131: *
                    132:          IF( J3.LE.N )
                    133:      $      CALL DROT( N-J1-1, T( J1, J3 ), LDT, T( J2, J3 ), LDT, CS,
                    134:      $                 SN )
                    135:          CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN )
                    136: *
                    137:          T( J1, J1 ) = T22
                    138:          T( J2, J2 ) = T11
                    139: *
                    140:          IF( WANTQ ) THEN
                    141: *
                    142: *           Accumulate transformation in the matrix Q.
                    143: *
                    144:             CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN )
                    145:          END IF
                    146: *
                    147:       ELSE
                    148: *
                    149: *        Swapping involves at least one 2-by-2 block.
                    150: *
                    151: *        Copy the diagonal block of order N1+N2 to the local array D
                    152: *        and compute its norm.
                    153: *
                    154:          ND = N1 + N2
                    155:          CALL DLACPY( 'Full', ND, ND, T( J1, J1 ), LDT, D, LDD )
                    156:          DNORM = DLANGE( 'Max', ND, ND, D, LDD, WORK )
                    157: *
                    158: *        Compute machine-dependent threshold for test for accepting
                    159: *        swap.
                    160: *
                    161:          EPS = DLAMCH( 'P' )
                    162:          SMLNUM = DLAMCH( 'S' ) / EPS
                    163:          THRESH = MAX( TEN*EPS*DNORM, SMLNUM )
                    164: *
                    165: *        Solve T11*X - X*T22 = scale*T12 for X.
                    166: *
                    167:          CALL DLASY2( .FALSE., .FALSE., -1, N1, N2, D, LDD,
                    168:      $                D( N1+1, N1+1 ), LDD, D( 1, N1+1 ), LDD, SCALE, X,
                    169:      $                LDX, XNORM, IERR )
                    170: *
                    171: *        Swap the adjacent diagonal blocks.
                    172: *
                    173:          K = N1 + N1 + N2 - 3
                    174:          GO TO ( 10, 20, 30 )K
                    175: *
                    176:    10    CONTINUE
                    177: *
                    178: *        N1 = 1, N2 = 2: generate elementary reflector H so that:
                    179: *
                    180: *        ( scale, X11, X12 ) H = ( 0, 0, * )
                    181: *
                    182:          U( 1 ) = SCALE
                    183:          U( 2 ) = X( 1, 1 )
                    184:          U( 3 ) = X( 1, 2 )
                    185:          CALL DLARFG( 3, U( 3 ), U, 1, TAU )
                    186:          U( 3 ) = ONE
                    187:          T11 = T( J1, J1 )
                    188: *
                    189: *        Perform swap provisionally on diagonal block in D.
                    190: *
                    191:          CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK )
                    192:          CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK )
                    193: *
                    194: *        Test whether to reject swap.
                    195: *
                    196:          IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 3,
                    197:      $       3 )-T11 ) ).GT.THRESH )GO TO 50
                    198: *
                    199: *        Accept swap: apply transformation to the entire matrix T.
                    200: *
                    201:          CALL DLARFX( 'L', 3, N-J1+1, U, TAU, T( J1, J1 ), LDT, WORK )
                    202:          CALL DLARFX( 'R', J2, 3, U, TAU, T( 1, J1 ), LDT, WORK )
                    203: *
                    204:          T( J3, J1 ) = ZERO
                    205:          T( J3, J2 ) = ZERO
                    206:          T( J3, J3 ) = T11
                    207: *
                    208:          IF( WANTQ ) THEN
                    209: *
                    210: *           Accumulate transformation in the matrix Q.
                    211: *
                    212:             CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK )
                    213:          END IF
                    214:          GO TO 40
                    215: *
                    216:    20    CONTINUE
                    217: *
                    218: *        N1 = 2, N2 = 1: generate elementary reflector H so that:
                    219: *
                    220: *        H (  -X11 ) = ( * )
                    221: *          (  -X21 ) = ( 0 )
                    222: *          ( scale ) = ( 0 )
                    223: *
                    224:          U( 1 ) = -X( 1, 1 )
                    225:          U( 2 ) = -X( 2, 1 )
                    226:          U( 3 ) = SCALE
                    227:          CALL DLARFG( 3, U( 1 ), U( 2 ), 1, TAU )
                    228:          U( 1 ) = ONE
                    229:          T33 = T( J3, J3 )
                    230: *
                    231: *        Perform swap provisionally on diagonal block in D.
                    232: *
                    233:          CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK )
                    234:          CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK )
                    235: *
                    236: *        Test whether to reject swap.
                    237: *
                    238:          IF( MAX( ABS( D( 2, 1 ) ), ABS( D( 3, 1 ) ), ABS( D( 1,
                    239:      $       1 )-T33 ) ).GT.THRESH )GO TO 50
                    240: *
                    241: *        Accept swap: apply transformation to the entire matrix T.
                    242: *
                    243:          CALL DLARFX( 'R', J3, 3, U, TAU, T( 1, J1 ), LDT, WORK )
                    244:          CALL DLARFX( 'L', 3, N-J1, U, TAU, T( J1, J2 ), LDT, WORK )
                    245: *
                    246:          T( J1, J1 ) = T33
                    247:          T( J2, J1 ) = ZERO
                    248:          T( J3, J1 ) = ZERO
                    249: *
                    250:          IF( WANTQ ) THEN
                    251: *
                    252: *           Accumulate transformation in the matrix Q.
                    253: *
                    254:             CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK )
                    255:          END IF
                    256:          GO TO 40
                    257: *
                    258:    30    CONTINUE
                    259: *
                    260: *        N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so
                    261: *        that:
                    262: *
                    263: *        H(2) H(1) (  -X11  -X12 ) = (  *  * )
                    264: *                  (  -X21  -X22 )   (  0  * )
                    265: *                  ( scale    0  )   (  0  0 )
                    266: *                  (    0  scale )   (  0  0 )
                    267: *
                    268:          U1( 1 ) = -X( 1, 1 )
                    269:          U1( 2 ) = -X( 2, 1 )
                    270:          U1( 3 ) = SCALE
                    271:          CALL DLARFG( 3, U1( 1 ), U1( 2 ), 1, TAU1 )
                    272:          U1( 1 ) = ONE
                    273: *
                    274:          TEMP = -TAU1*( X( 1, 2 )+U1( 2 )*X( 2, 2 ) )
                    275:          U2( 1 ) = -TEMP*U1( 2 ) - X( 2, 2 )
                    276:          U2( 2 ) = -TEMP*U1( 3 )
                    277:          U2( 3 ) = SCALE
                    278:          CALL DLARFG( 3, U2( 1 ), U2( 2 ), 1, TAU2 )
                    279:          U2( 1 ) = ONE
                    280: *
                    281: *        Perform swap provisionally on diagonal block in D.
                    282: *
                    283:          CALL DLARFX( 'L', 3, 4, U1, TAU1, D, LDD, WORK )
                    284:          CALL DLARFX( 'R', 4, 3, U1, TAU1, D, LDD, WORK )
                    285:          CALL DLARFX( 'L', 3, 4, U2, TAU2, D( 2, 1 ), LDD, WORK )
                    286:          CALL DLARFX( 'R', 4, 3, U2, TAU2, D( 1, 2 ), LDD, WORK )
                    287: *
                    288: *        Test whether to reject swap.
                    289: *
                    290:          IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 4, 1 ) ),
                    291:      $       ABS( D( 4, 2 ) ) ).GT.THRESH )GO TO 50
                    292: *
                    293: *        Accept swap: apply transformation to the entire matrix T.
                    294: *
                    295:          CALL DLARFX( 'L', 3, N-J1+1, U1, TAU1, T( J1, J1 ), LDT, WORK )
                    296:          CALL DLARFX( 'R', J4, 3, U1, TAU1, T( 1, J1 ), LDT, WORK )
                    297:          CALL DLARFX( 'L', 3, N-J1+1, U2, TAU2, T( J2, J1 ), LDT, WORK )
                    298:          CALL DLARFX( 'R', J4, 3, U2, TAU2, T( 1, J2 ), LDT, WORK )
                    299: *
                    300:          T( J3, J1 ) = ZERO
                    301:          T( J3, J2 ) = ZERO
                    302:          T( J4, J1 ) = ZERO
                    303:          T( J4, J2 ) = ZERO
                    304: *
                    305:          IF( WANTQ ) THEN
                    306: *
                    307: *           Accumulate transformation in the matrix Q.
                    308: *
                    309:             CALL DLARFX( 'R', N, 3, U1, TAU1, Q( 1, J1 ), LDQ, WORK )
                    310:             CALL DLARFX( 'R', N, 3, U2, TAU2, Q( 1, J2 ), LDQ, WORK )
                    311:          END IF
                    312: *
                    313:    40    CONTINUE
                    314: *
                    315:          IF( N2.EQ.2 ) THEN
                    316: *
                    317: *           Standardize new 2-by-2 block T11
                    318: *
                    319:             CALL DLANV2( T( J1, J1 ), T( J1, J2 ), T( J2, J1 ),
                    320:      $                   T( J2, J2 ), WR1, WI1, WR2, WI2, CS, SN )
                    321:             CALL DROT( N-J1-1, T( J1, J1+2 ), LDT, T( J2, J1+2 ), LDT,
                    322:      $                 CS, SN )
                    323:             CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN )
                    324:             IF( WANTQ )
                    325:      $         CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN )
                    326:          END IF
                    327: *
                    328:          IF( N1.EQ.2 ) THEN
                    329: *
                    330: *           Standardize new 2-by-2 block T22
                    331: *
                    332:             J3 = J1 + N2
                    333:             J4 = J3 + 1
                    334:             CALL DLANV2( T( J3, J3 ), T( J3, J4 ), T( J4, J3 ),
                    335:      $                   T( J4, J4 ), WR1, WI1, WR2, WI2, CS, SN )
                    336:             IF( J3+2.LE.N )
                    337:      $         CALL DROT( N-J3-1, T( J3, J3+2 ), LDT, T( J4, J3+2 ),
                    338:      $                    LDT, CS, SN )
                    339:             CALL DROT( J3-1, T( 1, J3 ), 1, T( 1, J4 ), 1, CS, SN )
                    340:             IF( WANTQ )
                    341:      $         CALL DROT( N, Q( 1, J3 ), 1, Q( 1, J4 ), 1, CS, SN )
                    342:          END IF
                    343: *
                    344:       END IF
                    345:       RETURN
                    346: *
                    347: *     Exit with INFO = 1 if swap was rejected.
                    348: *
                    349:    50 CONTINUE
                    350:       INFO = 1
                    351:       RETURN
                    352: *
                    353: *     End of DLAEXC
                    354: *
                    355:       END

CVSweb interface <joel.bertrand@systella.fr>