Annotation of rpl/lapack/lapack/dlaexc.f, revision 1.19

1.12      bertrand    1: *> \brief \b DLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DLAEXC + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaexc.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaexc.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaexc.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK,
                     22: *                          INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       LOGICAL            WANTQ
                     26: *       INTEGER            INFO, J1, LDQ, LDT, N, N1, N2
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WORK( * )
                     30: *       ..
1.16      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
                     39: *> an upper quasi-triangular matrix T by an orthogonal similarity
                     40: *> transformation.
                     41: *>
                     42: *> T must be in Schur canonical form, that is, block upper triangular
                     43: *> with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
1.19    ! bertrand   44: *> has its diagonal elements equal and its off-diagonal elements of
1.9       bertrand   45: *> opposite sign.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] WANTQ
                     52: *> \verbatim
                     53: *>          WANTQ is LOGICAL
                     54: *>          = .TRUE. : accumulate the transformation in the matrix Q;
                     55: *>          = .FALSE.: do not accumulate the transformation.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The order of the matrix T. N >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] T
                     65: *> \verbatim
                     66: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
                     67: *>          On entry, the upper quasi-triangular matrix T, in Schur
                     68: *>          canonical form.
                     69: *>          On exit, the updated matrix T, again in Schur canonical form.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] LDT
                     73: *> \verbatim
                     74: *>          LDT is INTEGER
                     75: *>          The leading dimension of the array T. LDT >= max(1,N).
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] Q
                     79: *> \verbatim
                     80: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                     81: *>          On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
                     82: *>          On exit, if WANTQ is .TRUE., the updated matrix Q.
                     83: *>          If WANTQ is .FALSE., Q is not referenced.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] LDQ
                     87: *> \verbatim
                     88: *>          LDQ is INTEGER
                     89: *>          The leading dimension of the array Q.
                     90: *>          LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] J1
                     94: *> \verbatim
                     95: *>          J1 is INTEGER
                     96: *>          The index of the first row of the first block T11.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] N1
                    100: *> \verbatim
                    101: *>          N1 is INTEGER
                    102: *>          The order of the first block T11. N1 = 0, 1 or 2.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] N2
                    106: *> \verbatim
                    107: *>          N2 is INTEGER
                    108: *>          The order of the second block T22. N2 = 0, 1 or 2.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[out] WORK
                    112: *> \verbatim
                    113: *>          WORK is DOUBLE PRECISION array, dimension (N)
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[out] INFO
                    117: *> \verbatim
                    118: *>          INFO is INTEGER
                    119: *>          = 0: successful exit
                    120: *>          = 1: the transformed matrix T would be too far from Schur
                    121: *>               form; the blocks are not swapped and T and Q are
                    122: *>               unchanged.
                    123: *> \endverbatim
                    124: *
                    125: *  Authors:
                    126: *  ========
                    127: *
1.16      bertrand  128: *> \author Univ. of Tennessee
                    129: *> \author Univ. of California Berkeley
                    130: *> \author Univ. of Colorado Denver
                    131: *> \author NAG Ltd.
1.9       bertrand  132: *
                    133: *> \ingroup doubleOTHERauxiliary
                    134: *
                    135: *  =====================================================================
1.1       bertrand  136:       SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK,
                    137:      $                   INFO )
                    138: *
1.19    ! bertrand  139: *  -- LAPACK auxiliary routine --
1.1       bertrand  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    142: *
                    143: *     .. Scalar Arguments ..
                    144:       LOGICAL            WANTQ
                    145:       INTEGER            INFO, J1, LDQ, LDT, N, N1, N2
                    146: *     ..
                    147: *     .. Array Arguments ..
                    148:       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WORK( * )
                    149: *     ..
                    150: *
                    151: *  =====================================================================
                    152: *
                    153: *     .. Parameters ..
                    154:       DOUBLE PRECISION   ZERO, ONE
                    155:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    156:       DOUBLE PRECISION   TEN
                    157:       PARAMETER          ( TEN = 1.0D+1 )
                    158:       INTEGER            LDD, LDX
                    159:       PARAMETER          ( LDD = 4, LDX = 2 )
                    160: *     ..
                    161: *     .. Local Scalars ..
                    162:       INTEGER            IERR, J2, J3, J4, K, ND
                    163:       DOUBLE PRECISION   CS, DNORM, EPS, SCALE, SMLNUM, SN, T11, T22,
                    164:      $                   T33, TAU, TAU1, TAU2, TEMP, THRESH, WI1, WI2,
                    165:      $                   WR1, WR2, XNORM
                    166: *     ..
                    167: *     .. Local Arrays ..
                    168:       DOUBLE PRECISION   D( LDD, 4 ), U( 3 ), U1( 3 ), U2( 3 ),
                    169:      $                   X( LDX, 2 )
                    170: *     ..
                    171: *     .. External Functions ..
                    172:       DOUBLE PRECISION   DLAMCH, DLANGE
                    173:       EXTERNAL           DLAMCH, DLANGE
                    174: *     ..
                    175: *     .. External Subroutines ..
                    176:       EXTERNAL           DLACPY, DLANV2, DLARFG, DLARFX, DLARTG, DLASY2,
                    177:      $                   DROT
                    178: *     ..
                    179: *     .. Intrinsic Functions ..
                    180:       INTRINSIC          ABS, MAX
                    181: *     ..
                    182: *     .. Executable Statements ..
                    183: *
                    184:       INFO = 0
                    185: *
                    186: *     Quick return if possible
                    187: *
                    188:       IF( N.EQ.0 .OR. N1.EQ.0 .OR. N2.EQ.0 )
                    189:      $   RETURN
                    190:       IF( J1+N1.GT.N )
                    191:      $   RETURN
                    192: *
                    193:       J2 = J1 + 1
                    194:       J3 = J1 + 2
                    195:       J4 = J1 + 3
                    196: *
                    197:       IF( N1.EQ.1 .AND. N2.EQ.1 ) THEN
                    198: *
                    199: *        Swap two 1-by-1 blocks.
                    200: *
                    201:          T11 = T( J1, J1 )
                    202:          T22 = T( J2, J2 )
                    203: *
                    204: *        Determine the transformation to perform the interchange.
                    205: *
                    206:          CALL DLARTG( T( J1, J2 ), T22-T11, CS, SN, TEMP )
                    207: *
                    208: *        Apply transformation to the matrix T.
                    209: *
                    210:          IF( J3.LE.N )
                    211:      $      CALL DROT( N-J1-1, T( J1, J3 ), LDT, T( J2, J3 ), LDT, CS,
                    212:      $                 SN )
                    213:          CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN )
                    214: *
                    215:          T( J1, J1 ) = T22
                    216:          T( J2, J2 ) = T11
                    217: *
                    218:          IF( WANTQ ) THEN
                    219: *
                    220: *           Accumulate transformation in the matrix Q.
                    221: *
                    222:             CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN )
                    223:          END IF
                    224: *
                    225:       ELSE
                    226: *
                    227: *        Swapping involves at least one 2-by-2 block.
                    228: *
                    229: *        Copy the diagonal block of order N1+N2 to the local array D
                    230: *        and compute its norm.
                    231: *
                    232:          ND = N1 + N2
                    233:          CALL DLACPY( 'Full', ND, ND, T( J1, J1 ), LDT, D, LDD )
                    234:          DNORM = DLANGE( 'Max', ND, ND, D, LDD, WORK )
                    235: *
                    236: *        Compute machine-dependent threshold for test for accepting
                    237: *        swap.
                    238: *
                    239:          EPS = DLAMCH( 'P' )
                    240:          SMLNUM = DLAMCH( 'S' ) / EPS
                    241:          THRESH = MAX( TEN*EPS*DNORM, SMLNUM )
                    242: *
                    243: *        Solve T11*X - X*T22 = scale*T12 for X.
                    244: *
                    245:          CALL DLASY2( .FALSE., .FALSE., -1, N1, N2, D, LDD,
                    246:      $                D( N1+1, N1+1 ), LDD, D( 1, N1+1 ), LDD, SCALE, X,
                    247:      $                LDX, XNORM, IERR )
                    248: *
                    249: *        Swap the adjacent diagonal blocks.
                    250: *
                    251:          K = N1 + N1 + N2 - 3
                    252:          GO TO ( 10, 20, 30 )K
                    253: *
                    254:    10    CONTINUE
                    255: *
                    256: *        N1 = 1, N2 = 2: generate elementary reflector H so that:
                    257: *
                    258: *        ( scale, X11, X12 ) H = ( 0, 0, * )
                    259: *
                    260:          U( 1 ) = SCALE
                    261:          U( 2 ) = X( 1, 1 )
                    262:          U( 3 ) = X( 1, 2 )
                    263:          CALL DLARFG( 3, U( 3 ), U, 1, TAU )
                    264:          U( 3 ) = ONE
                    265:          T11 = T( J1, J1 )
                    266: *
                    267: *        Perform swap provisionally on diagonal block in D.
                    268: *
                    269:          CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK )
                    270:          CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK )
                    271: *
                    272: *        Test whether to reject swap.
                    273: *
                    274:          IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 3,
                    275:      $       3 )-T11 ) ).GT.THRESH )GO TO 50
                    276: *
                    277: *        Accept swap: apply transformation to the entire matrix T.
                    278: *
                    279:          CALL DLARFX( 'L', 3, N-J1+1, U, TAU, T( J1, J1 ), LDT, WORK )
                    280:          CALL DLARFX( 'R', J2, 3, U, TAU, T( 1, J1 ), LDT, WORK )
                    281: *
                    282:          T( J3, J1 ) = ZERO
                    283:          T( J3, J2 ) = ZERO
                    284:          T( J3, J3 ) = T11
                    285: *
                    286:          IF( WANTQ ) THEN
                    287: *
                    288: *           Accumulate transformation in the matrix Q.
                    289: *
                    290:             CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK )
                    291:          END IF
                    292:          GO TO 40
                    293: *
                    294:    20    CONTINUE
                    295: *
                    296: *        N1 = 2, N2 = 1: generate elementary reflector H so that:
                    297: *
                    298: *        H (  -X11 ) = ( * )
                    299: *          (  -X21 ) = ( 0 )
                    300: *          ( scale ) = ( 0 )
                    301: *
                    302:          U( 1 ) = -X( 1, 1 )
                    303:          U( 2 ) = -X( 2, 1 )
                    304:          U( 3 ) = SCALE
                    305:          CALL DLARFG( 3, U( 1 ), U( 2 ), 1, TAU )
                    306:          U( 1 ) = ONE
                    307:          T33 = T( J3, J3 )
                    308: *
                    309: *        Perform swap provisionally on diagonal block in D.
                    310: *
                    311:          CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK )
                    312:          CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK )
                    313: *
                    314: *        Test whether to reject swap.
                    315: *
                    316:          IF( MAX( ABS( D( 2, 1 ) ), ABS( D( 3, 1 ) ), ABS( D( 1,
                    317:      $       1 )-T33 ) ).GT.THRESH )GO TO 50
                    318: *
                    319: *        Accept swap: apply transformation to the entire matrix T.
                    320: *
                    321:          CALL DLARFX( 'R', J3, 3, U, TAU, T( 1, J1 ), LDT, WORK )
                    322:          CALL DLARFX( 'L', 3, N-J1, U, TAU, T( J1, J2 ), LDT, WORK )
                    323: *
                    324:          T( J1, J1 ) = T33
                    325:          T( J2, J1 ) = ZERO
                    326:          T( J3, J1 ) = ZERO
                    327: *
                    328:          IF( WANTQ ) THEN
                    329: *
                    330: *           Accumulate transformation in the matrix Q.
                    331: *
                    332:             CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK )
                    333:          END IF
                    334:          GO TO 40
                    335: *
                    336:    30    CONTINUE
                    337: *
                    338: *        N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so
                    339: *        that:
                    340: *
                    341: *        H(2) H(1) (  -X11  -X12 ) = (  *  * )
                    342: *                  (  -X21  -X22 )   (  0  * )
                    343: *                  ( scale    0  )   (  0  0 )
                    344: *                  (    0  scale )   (  0  0 )
                    345: *
                    346:          U1( 1 ) = -X( 1, 1 )
                    347:          U1( 2 ) = -X( 2, 1 )
                    348:          U1( 3 ) = SCALE
                    349:          CALL DLARFG( 3, U1( 1 ), U1( 2 ), 1, TAU1 )
                    350:          U1( 1 ) = ONE
                    351: *
                    352:          TEMP = -TAU1*( X( 1, 2 )+U1( 2 )*X( 2, 2 ) )
                    353:          U2( 1 ) = -TEMP*U1( 2 ) - X( 2, 2 )
                    354:          U2( 2 ) = -TEMP*U1( 3 )
                    355:          U2( 3 ) = SCALE
                    356:          CALL DLARFG( 3, U2( 1 ), U2( 2 ), 1, TAU2 )
                    357:          U2( 1 ) = ONE
                    358: *
                    359: *        Perform swap provisionally on diagonal block in D.
                    360: *
                    361:          CALL DLARFX( 'L', 3, 4, U1, TAU1, D, LDD, WORK )
                    362:          CALL DLARFX( 'R', 4, 3, U1, TAU1, D, LDD, WORK )
                    363:          CALL DLARFX( 'L', 3, 4, U2, TAU2, D( 2, 1 ), LDD, WORK )
                    364:          CALL DLARFX( 'R', 4, 3, U2, TAU2, D( 1, 2 ), LDD, WORK )
                    365: *
                    366: *        Test whether to reject swap.
                    367: *
                    368:          IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 4, 1 ) ),
                    369:      $       ABS( D( 4, 2 ) ) ).GT.THRESH )GO TO 50
                    370: *
                    371: *        Accept swap: apply transformation to the entire matrix T.
                    372: *
                    373:          CALL DLARFX( 'L', 3, N-J1+1, U1, TAU1, T( J1, J1 ), LDT, WORK )
                    374:          CALL DLARFX( 'R', J4, 3, U1, TAU1, T( 1, J1 ), LDT, WORK )
                    375:          CALL DLARFX( 'L', 3, N-J1+1, U2, TAU2, T( J2, J1 ), LDT, WORK )
                    376:          CALL DLARFX( 'R', J4, 3, U2, TAU2, T( 1, J2 ), LDT, WORK )
                    377: *
                    378:          T( J3, J1 ) = ZERO
                    379:          T( J3, J2 ) = ZERO
                    380:          T( J4, J1 ) = ZERO
                    381:          T( J4, J2 ) = ZERO
                    382: *
                    383:          IF( WANTQ ) THEN
                    384: *
                    385: *           Accumulate transformation in the matrix Q.
                    386: *
                    387:             CALL DLARFX( 'R', N, 3, U1, TAU1, Q( 1, J1 ), LDQ, WORK )
                    388:             CALL DLARFX( 'R', N, 3, U2, TAU2, Q( 1, J2 ), LDQ, WORK )
                    389:          END IF
                    390: *
                    391:    40    CONTINUE
                    392: *
                    393:          IF( N2.EQ.2 ) THEN
                    394: *
                    395: *           Standardize new 2-by-2 block T11
                    396: *
                    397:             CALL DLANV2( T( J1, J1 ), T( J1, J2 ), T( J2, J1 ),
                    398:      $                   T( J2, J2 ), WR1, WI1, WR2, WI2, CS, SN )
                    399:             CALL DROT( N-J1-1, T( J1, J1+2 ), LDT, T( J2, J1+2 ), LDT,
                    400:      $                 CS, SN )
                    401:             CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN )
                    402:             IF( WANTQ )
                    403:      $         CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN )
                    404:          END IF
                    405: *
                    406:          IF( N1.EQ.2 ) THEN
                    407: *
                    408: *           Standardize new 2-by-2 block T22
                    409: *
                    410:             J3 = J1 + N2
                    411:             J4 = J3 + 1
                    412:             CALL DLANV2( T( J3, J3 ), T( J3, J4 ), T( J4, J3 ),
                    413:      $                   T( J4, J4 ), WR1, WI1, WR2, WI2, CS, SN )
                    414:             IF( J3+2.LE.N )
                    415:      $         CALL DROT( N-J3-1, T( J3, J3+2 ), LDT, T( J4, J3+2 ),
                    416:      $                    LDT, CS, SN )
                    417:             CALL DROT( J3-1, T( 1, J3 ), 1, T( 1, J4 ), 1, CS, SN )
                    418:             IF( WANTQ )
                    419:      $         CALL DROT( N, Q( 1, J3 ), 1, Q( 1, J4 ), 1, CS, SN )
                    420:          END IF
                    421: *
                    422:       END IF
                    423:       RETURN
                    424: *
                    425: *     Exit with INFO = 1 if swap was rejected.
                    426: *
                    427:    50 CONTINUE
                    428:       INFO = 1
                    429:       RETURN
                    430: *
                    431: *     End of DLAEXC
                    432: *
                    433:       END

CVSweb interface <joel.bertrand@systella.fr>