Annotation of rpl/lapack/lapack/dlaexc.f, revision 1.15

1.12      bertrand    1: *> \brief \b DLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLAEXC + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaexc.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaexc.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaexc.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK,
                     22: *                          INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       LOGICAL            WANTQ
                     26: *       INTEGER            INFO, J1, LDQ, LDT, N, N1, N2
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WORK( * )
                     30: *       ..
                     31: *  
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
                     39: *> an upper quasi-triangular matrix T by an orthogonal similarity
                     40: *> transformation.
                     41: *>
                     42: *> T must be in Schur canonical form, that is, block upper triangular
                     43: *> with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
                     44: *> has its diagonal elemnts equal and its off-diagonal elements of
                     45: *> opposite sign.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] WANTQ
                     52: *> \verbatim
                     53: *>          WANTQ is LOGICAL
                     54: *>          = .TRUE. : accumulate the transformation in the matrix Q;
                     55: *>          = .FALSE.: do not accumulate the transformation.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The order of the matrix T. N >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] T
                     65: *> \verbatim
                     66: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
                     67: *>          On entry, the upper quasi-triangular matrix T, in Schur
                     68: *>          canonical form.
                     69: *>          On exit, the updated matrix T, again in Schur canonical form.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] LDT
                     73: *> \verbatim
                     74: *>          LDT is INTEGER
                     75: *>          The leading dimension of the array T. LDT >= max(1,N).
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] Q
                     79: *> \verbatim
                     80: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                     81: *>          On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
                     82: *>          On exit, if WANTQ is .TRUE., the updated matrix Q.
                     83: *>          If WANTQ is .FALSE., Q is not referenced.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] LDQ
                     87: *> \verbatim
                     88: *>          LDQ is INTEGER
                     89: *>          The leading dimension of the array Q.
                     90: *>          LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] J1
                     94: *> \verbatim
                     95: *>          J1 is INTEGER
                     96: *>          The index of the first row of the first block T11.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] N1
                    100: *> \verbatim
                    101: *>          N1 is INTEGER
                    102: *>          The order of the first block T11. N1 = 0, 1 or 2.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] N2
                    106: *> \verbatim
                    107: *>          N2 is INTEGER
                    108: *>          The order of the second block T22. N2 = 0, 1 or 2.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[out] WORK
                    112: *> \verbatim
                    113: *>          WORK is DOUBLE PRECISION array, dimension (N)
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[out] INFO
                    117: *> \verbatim
                    118: *>          INFO is INTEGER
                    119: *>          = 0: successful exit
                    120: *>          = 1: the transformed matrix T would be too far from Schur
                    121: *>               form; the blocks are not swapped and T and Q are
                    122: *>               unchanged.
                    123: *> \endverbatim
                    124: *
                    125: *  Authors:
                    126: *  ========
                    127: *
                    128: *> \author Univ. of Tennessee 
                    129: *> \author Univ. of California Berkeley 
                    130: *> \author Univ. of Colorado Denver 
                    131: *> \author NAG Ltd. 
                    132: *
1.12      bertrand  133: *> \date September 2012
1.9       bertrand  134: *
                    135: *> \ingroup doubleOTHERauxiliary
                    136: *
                    137: *  =====================================================================
1.1       bertrand  138:       SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK,
                    139:      $                   INFO )
                    140: *
1.12      bertrand  141: *  -- LAPACK auxiliary routine (version 3.4.2) --
1.1       bertrand  142: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    143: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12      bertrand  144: *     September 2012
1.1       bertrand  145: *
                    146: *     .. Scalar Arguments ..
                    147:       LOGICAL            WANTQ
                    148:       INTEGER            INFO, J1, LDQ, LDT, N, N1, N2
                    149: *     ..
                    150: *     .. Array Arguments ..
                    151:       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WORK( * )
                    152: *     ..
                    153: *
                    154: *  =====================================================================
                    155: *
                    156: *     .. Parameters ..
                    157:       DOUBLE PRECISION   ZERO, ONE
                    158:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    159:       DOUBLE PRECISION   TEN
                    160:       PARAMETER          ( TEN = 1.0D+1 )
                    161:       INTEGER            LDD, LDX
                    162:       PARAMETER          ( LDD = 4, LDX = 2 )
                    163: *     ..
                    164: *     .. Local Scalars ..
                    165:       INTEGER            IERR, J2, J3, J4, K, ND
                    166:       DOUBLE PRECISION   CS, DNORM, EPS, SCALE, SMLNUM, SN, T11, T22,
                    167:      $                   T33, TAU, TAU1, TAU2, TEMP, THRESH, WI1, WI2,
                    168:      $                   WR1, WR2, XNORM
                    169: *     ..
                    170: *     .. Local Arrays ..
                    171:       DOUBLE PRECISION   D( LDD, 4 ), U( 3 ), U1( 3 ), U2( 3 ),
                    172:      $                   X( LDX, 2 )
                    173: *     ..
                    174: *     .. External Functions ..
                    175:       DOUBLE PRECISION   DLAMCH, DLANGE
                    176:       EXTERNAL           DLAMCH, DLANGE
                    177: *     ..
                    178: *     .. External Subroutines ..
                    179:       EXTERNAL           DLACPY, DLANV2, DLARFG, DLARFX, DLARTG, DLASY2,
                    180:      $                   DROT
                    181: *     ..
                    182: *     .. Intrinsic Functions ..
                    183:       INTRINSIC          ABS, MAX
                    184: *     ..
                    185: *     .. Executable Statements ..
                    186: *
                    187:       INFO = 0
                    188: *
                    189: *     Quick return if possible
                    190: *
                    191:       IF( N.EQ.0 .OR. N1.EQ.0 .OR. N2.EQ.0 )
                    192:      $   RETURN
                    193:       IF( J1+N1.GT.N )
                    194:      $   RETURN
                    195: *
                    196:       J2 = J1 + 1
                    197:       J3 = J1 + 2
                    198:       J4 = J1 + 3
                    199: *
                    200:       IF( N1.EQ.1 .AND. N2.EQ.1 ) THEN
                    201: *
                    202: *        Swap two 1-by-1 blocks.
                    203: *
                    204:          T11 = T( J1, J1 )
                    205:          T22 = T( J2, J2 )
                    206: *
                    207: *        Determine the transformation to perform the interchange.
                    208: *
                    209:          CALL DLARTG( T( J1, J2 ), T22-T11, CS, SN, TEMP )
                    210: *
                    211: *        Apply transformation to the matrix T.
                    212: *
                    213:          IF( J3.LE.N )
                    214:      $      CALL DROT( N-J1-1, T( J1, J3 ), LDT, T( J2, J3 ), LDT, CS,
                    215:      $                 SN )
                    216:          CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN )
                    217: *
                    218:          T( J1, J1 ) = T22
                    219:          T( J2, J2 ) = T11
                    220: *
                    221:          IF( WANTQ ) THEN
                    222: *
                    223: *           Accumulate transformation in the matrix Q.
                    224: *
                    225:             CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN )
                    226:          END IF
                    227: *
                    228:       ELSE
                    229: *
                    230: *        Swapping involves at least one 2-by-2 block.
                    231: *
                    232: *        Copy the diagonal block of order N1+N2 to the local array D
                    233: *        and compute its norm.
                    234: *
                    235:          ND = N1 + N2
                    236:          CALL DLACPY( 'Full', ND, ND, T( J1, J1 ), LDT, D, LDD )
                    237:          DNORM = DLANGE( 'Max', ND, ND, D, LDD, WORK )
                    238: *
                    239: *        Compute machine-dependent threshold for test for accepting
                    240: *        swap.
                    241: *
                    242:          EPS = DLAMCH( 'P' )
                    243:          SMLNUM = DLAMCH( 'S' ) / EPS
                    244:          THRESH = MAX( TEN*EPS*DNORM, SMLNUM )
                    245: *
                    246: *        Solve T11*X - X*T22 = scale*T12 for X.
                    247: *
                    248:          CALL DLASY2( .FALSE., .FALSE., -1, N1, N2, D, LDD,
                    249:      $                D( N1+1, N1+1 ), LDD, D( 1, N1+1 ), LDD, SCALE, X,
                    250:      $                LDX, XNORM, IERR )
                    251: *
                    252: *        Swap the adjacent diagonal blocks.
                    253: *
                    254:          K = N1 + N1 + N2 - 3
                    255:          GO TO ( 10, 20, 30 )K
                    256: *
                    257:    10    CONTINUE
                    258: *
                    259: *        N1 = 1, N2 = 2: generate elementary reflector H so that:
                    260: *
                    261: *        ( scale, X11, X12 ) H = ( 0, 0, * )
                    262: *
                    263:          U( 1 ) = SCALE
                    264:          U( 2 ) = X( 1, 1 )
                    265:          U( 3 ) = X( 1, 2 )
                    266:          CALL DLARFG( 3, U( 3 ), U, 1, TAU )
                    267:          U( 3 ) = ONE
                    268:          T11 = T( J1, J1 )
                    269: *
                    270: *        Perform swap provisionally on diagonal block in D.
                    271: *
                    272:          CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK )
                    273:          CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK )
                    274: *
                    275: *        Test whether to reject swap.
                    276: *
                    277:          IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 3,
                    278:      $       3 )-T11 ) ).GT.THRESH )GO TO 50
                    279: *
                    280: *        Accept swap: apply transformation to the entire matrix T.
                    281: *
                    282:          CALL DLARFX( 'L', 3, N-J1+1, U, TAU, T( J1, J1 ), LDT, WORK )
                    283:          CALL DLARFX( 'R', J2, 3, U, TAU, T( 1, J1 ), LDT, WORK )
                    284: *
                    285:          T( J3, J1 ) = ZERO
                    286:          T( J3, J2 ) = ZERO
                    287:          T( J3, J3 ) = T11
                    288: *
                    289:          IF( WANTQ ) THEN
                    290: *
                    291: *           Accumulate transformation in the matrix Q.
                    292: *
                    293:             CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK )
                    294:          END IF
                    295:          GO TO 40
                    296: *
                    297:    20    CONTINUE
                    298: *
                    299: *        N1 = 2, N2 = 1: generate elementary reflector H so that:
                    300: *
                    301: *        H (  -X11 ) = ( * )
                    302: *          (  -X21 ) = ( 0 )
                    303: *          ( scale ) = ( 0 )
                    304: *
                    305:          U( 1 ) = -X( 1, 1 )
                    306:          U( 2 ) = -X( 2, 1 )
                    307:          U( 3 ) = SCALE
                    308:          CALL DLARFG( 3, U( 1 ), U( 2 ), 1, TAU )
                    309:          U( 1 ) = ONE
                    310:          T33 = T( J3, J3 )
                    311: *
                    312: *        Perform swap provisionally on diagonal block in D.
                    313: *
                    314:          CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK )
                    315:          CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK )
                    316: *
                    317: *        Test whether to reject swap.
                    318: *
                    319:          IF( MAX( ABS( D( 2, 1 ) ), ABS( D( 3, 1 ) ), ABS( D( 1,
                    320:      $       1 )-T33 ) ).GT.THRESH )GO TO 50
                    321: *
                    322: *        Accept swap: apply transformation to the entire matrix T.
                    323: *
                    324:          CALL DLARFX( 'R', J3, 3, U, TAU, T( 1, J1 ), LDT, WORK )
                    325:          CALL DLARFX( 'L', 3, N-J1, U, TAU, T( J1, J2 ), LDT, WORK )
                    326: *
                    327:          T( J1, J1 ) = T33
                    328:          T( J2, J1 ) = ZERO
                    329:          T( J3, J1 ) = ZERO
                    330: *
                    331:          IF( WANTQ ) THEN
                    332: *
                    333: *           Accumulate transformation in the matrix Q.
                    334: *
                    335:             CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK )
                    336:          END IF
                    337:          GO TO 40
                    338: *
                    339:    30    CONTINUE
                    340: *
                    341: *        N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so
                    342: *        that:
                    343: *
                    344: *        H(2) H(1) (  -X11  -X12 ) = (  *  * )
                    345: *                  (  -X21  -X22 )   (  0  * )
                    346: *                  ( scale    0  )   (  0  0 )
                    347: *                  (    0  scale )   (  0  0 )
                    348: *
                    349:          U1( 1 ) = -X( 1, 1 )
                    350:          U1( 2 ) = -X( 2, 1 )
                    351:          U1( 3 ) = SCALE
                    352:          CALL DLARFG( 3, U1( 1 ), U1( 2 ), 1, TAU1 )
                    353:          U1( 1 ) = ONE
                    354: *
                    355:          TEMP = -TAU1*( X( 1, 2 )+U1( 2 )*X( 2, 2 ) )
                    356:          U2( 1 ) = -TEMP*U1( 2 ) - X( 2, 2 )
                    357:          U2( 2 ) = -TEMP*U1( 3 )
                    358:          U2( 3 ) = SCALE
                    359:          CALL DLARFG( 3, U2( 1 ), U2( 2 ), 1, TAU2 )
                    360:          U2( 1 ) = ONE
                    361: *
                    362: *        Perform swap provisionally on diagonal block in D.
                    363: *
                    364:          CALL DLARFX( 'L', 3, 4, U1, TAU1, D, LDD, WORK )
                    365:          CALL DLARFX( 'R', 4, 3, U1, TAU1, D, LDD, WORK )
                    366:          CALL DLARFX( 'L', 3, 4, U2, TAU2, D( 2, 1 ), LDD, WORK )
                    367:          CALL DLARFX( 'R', 4, 3, U2, TAU2, D( 1, 2 ), LDD, WORK )
                    368: *
                    369: *        Test whether to reject swap.
                    370: *
                    371:          IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 4, 1 ) ),
                    372:      $       ABS( D( 4, 2 ) ) ).GT.THRESH )GO TO 50
                    373: *
                    374: *        Accept swap: apply transformation to the entire matrix T.
                    375: *
                    376:          CALL DLARFX( 'L', 3, N-J1+1, U1, TAU1, T( J1, J1 ), LDT, WORK )
                    377:          CALL DLARFX( 'R', J4, 3, U1, TAU1, T( 1, J1 ), LDT, WORK )
                    378:          CALL DLARFX( 'L', 3, N-J1+1, U2, TAU2, T( J2, J1 ), LDT, WORK )
                    379:          CALL DLARFX( 'R', J4, 3, U2, TAU2, T( 1, J2 ), LDT, WORK )
                    380: *
                    381:          T( J3, J1 ) = ZERO
                    382:          T( J3, J2 ) = ZERO
                    383:          T( J4, J1 ) = ZERO
                    384:          T( J4, J2 ) = ZERO
                    385: *
                    386:          IF( WANTQ ) THEN
                    387: *
                    388: *           Accumulate transformation in the matrix Q.
                    389: *
                    390:             CALL DLARFX( 'R', N, 3, U1, TAU1, Q( 1, J1 ), LDQ, WORK )
                    391:             CALL DLARFX( 'R', N, 3, U2, TAU2, Q( 1, J2 ), LDQ, WORK )
                    392:          END IF
                    393: *
                    394:    40    CONTINUE
                    395: *
                    396:          IF( N2.EQ.2 ) THEN
                    397: *
                    398: *           Standardize new 2-by-2 block T11
                    399: *
                    400:             CALL DLANV2( T( J1, J1 ), T( J1, J2 ), T( J2, J1 ),
                    401:      $                   T( J2, J2 ), WR1, WI1, WR2, WI2, CS, SN )
                    402:             CALL DROT( N-J1-1, T( J1, J1+2 ), LDT, T( J2, J1+2 ), LDT,
                    403:      $                 CS, SN )
                    404:             CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN )
                    405:             IF( WANTQ )
                    406:      $         CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN )
                    407:          END IF
                    408: *
                    409:          IF( N1.EQ.2 ) THEN
                    410: *
                    411: *           Standardize new 2-by-2 block T22
                    412: *
                    413:             J3 = J1 + N2
                    414:             J4 = J3 + 1
                    415:             CALL DLANV2( T( J3, J3 ), T( J3, J4 ), T( J4, J3 ),
                    416:      $                   T( J4, J4 ), WR1, WI1, WR2, WI2, CS, SN )
                    417:             IF( J3+2.LE.N )
                    418:      $         CALL DROT( N-J3-1, T( J3, J3+2 ), LDT, T( J4, J3+2 ),
                    419:      $                    LDT, CS, SN )
                    420:             CALL DROT( J3-1, T( 1, J3 ), 1, T( 1, J4 ), 1, CS, SN )
                    421:             IF( WANTQ )
                    422:      $         CALL DROT( N, Q( 1, J3 ), 1, Q( 1, J4 ), 1, CS, SN )
                    423:          END IF
                    424: *
                    425:       END IF
                    426:       RETURN
                    427: *
                    428: *     Exit with INFO = 1 if swap was rejected.
                    429: *
                    430:    50 CONTINUE
                    431:       INFO = 1
                    432:       RETURN
                    433: *
                    434: *     End of DLAEXC
                    435: *
                    436:       END

CVSweb interface <joel.bertrand@systella.fr>