Annotation of rpl/lapack/lapack/dlaev2.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DLAEV2
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAEV2 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaev2.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaev2.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaev2.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       DOUBLE PRECISION   A, B, C, CS1, RT1, RT2, SN1
        !            25: *       ..
        !            26: *  
        !            27: *
        !            28: *> \par Purpose:
        !            29: *  =============
        !            30: *>
        !            31: *> \verbatim
        !            32: *>
        !            33: *> DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
        !            34: *>    [  A   B  ]
        !            35: *>    [  B   C  ].
        !            36: *> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
        !            37: *> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
        !            38: *> eigenvector for RT1, giving the decomposition
        !            39: *>
        !            40: *>    [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ]
        !            41: *>    [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ].
        !            42: *> \endverbatim
        !            43: *
        !            44: *  Arguments:
        !            45: *  ==========
        !            46: *
        !            47: *> \param[in] A
        !            48: *> \verbatim
        !            49: *>          A is DOUBLE PRECISION
        !            50: *>          The (1,1) element of the 2-by-2 matrix.
        !            51: *> \endverbatim
        !            52: *>
        !            53: *> \param[in] B
        !            54: *> \verbatim
        !            55: *>          B is DOUBLE PRECISION
        !            56: *>          The (1,2) element and the conjugate of the (2,1) element of
        !            57: *>          the 2-by-2 matrix.
        !            58: *> \endverbatim
        !            59: *>
        !            60: *> \param[in] C
        !            61: *> \verbatim
        !            62: *>          C is DOUBLE PRECISION
        !            63: *>          The (2,2) element of the 2-by-2 matrix.
        !            64: *> \endverbatim
        !            65: *>
        !            66: *> \param[out] RT1
        !            67: *> \verbatim
        !            68: *>          RT1 is DOUBLE PRECISION
        !            69: *>          The eigenvalue of larger absolute value.
        !            70: *> \endverbatim
        !            71: *>
        !            72: *> \param[out] RT2
        !            73: *> \verbatim
        !            74: *>          RT2 is DOUBLE PRECISION
        !            75: *>          The eigenvalue of smaller absolute value.
        !            76: *> \endverbatim
        !            77: *>
        !            78: *> \param[out] CS1
        !            79: *> \verbatim
        !            80: *>          CS1 is DOUBLE PRECISION
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[out] SN1
        !            84: *> \verbatim
        !            85: *>          SN1 is DOUBLE PRECISION
        !            86: *>          The vector (CS1, SN1) is a unit right eigenvector for RT1.
        !            87: *> \endverbatim
        !            88: *
        !            89: *  Authors:
        !            90: *  ========
        !            91: *
        !            92: *> \author Univ. of Tennessee 
        !            93: *> \author Univ. of California Berkeley 
        !            94: *> \author Univ. of Colorado Denver 
        !            95: *> \author NAG Ltd. 
        !            96: *
        !            97: *> \date November 2011
        !            98: *
        !            99: *> \ingroup auxOTHERauxiliary
        !           100: *
        !           101: *> \par Further Details:
        !           102: *  =====================
        !           103: *>
        !           104: *> \verbatim
        !           105: *>
        !           106: *>  RT1 is accurate to a few ulps barring over/underflow.
        !           107: *>
        !           108: *>  RT2 may be inaccurate if there is massive cancellation in the
        !           109: *>  determinant A*C-B*B; higher precision or correctly rounded or
        !           110: *>  correctly truncated arithmetic would be needed to compute RT2
        !           111: *>  accurately in all cases.
        !           112: *>
        !           113: *>  CS1 and SN1 are accurate to a few ulps barring over/underflow.
        !           114: *>
        !           115: *>  Overflow is possible only if RT1 is within a factor of 5 of overflow.
        !           116: *>  Underflow is harmless if the input data is 0 or exceeds
        !           117: *>     underflow_threshold / macheps.
        !           118: *> \endverbatim
        !           119: *>
        !           120: *  =====================================================================
1.1       bertrand  121:       SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
                    122: *
1.8     ! bertrand  123: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  124: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    125: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  126: *     November 2011
1.1       bertrand  127: *
                    128: *     .. Scalar Arguments ..
                    129:       DOUBLE PRECISION   A, B, C, CS1, RT1, RT2, SN1
                    130: *     ..
                    131: *
                    132: * =====================================================================
                    133: *
                    134: *     .. Parameters ..
                    135:       DOUBLE PRECISION   ONE
                    136:       PARAMETER          ( ONE = 1.0D0 )
                    137:       DOUBLE PRECISION   TWO
                    138:       PARAMETER          ( TWO = 2.0D0 )
                    139:       DOUBLE PRECISION   ZERO
                    140:       PARAMETER          ( ZERO = 0.0D0 )
                    141:       DOUBLE PRECISION   HALF
                    142:       PARAMETER          ( HALF = 0.5D0 )
                    143: *     ..
                    144: *     .. Local Scalars ..
                    145:       INTEGER            SGN1, SGN2
                    146:       DOUBLE PRECISION   AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
                    147:      $                   TB, TN
                    148: *     ..
                    149: *     .. Intrinsic Functions ..
                    150:       INTRINSIC          ABS, SQRT
                    151: *     ..
                    152: *     .. Executable Statements ..
                    153: *
                    154: *     Compute the eigenvalues
                    155: *
                    156:       SM = A + C
                    157:       DF = A - C
                    158:       ADF = ABS( DF )
                    159:       TB = B + B
                    160:       AB = ABS( TB )
                    161:       IF( ABS( A ).GT.ABS( C ) ) THEN
                    162:          ACMX = A
                    163:          ACMN = C
                    164:       ELSE
                    165:          ACMX = C
                    166:          ACMN = A
                    167:       END IF
                    168:       IF( ADF.GT.AB ) THEN
                    169:          RT = ADF*SQRT( ONE+( AB / ADF )**2 )
                    170:       ELSE IF( ADF.LT.AB ) THEN
                    171:          RT = AB*SQRT( ONE+( ADF / AB )**2 )
                    172:       ELSE
                    173: *
                    174: *        Includes case AB=ADF=0
                    175: *
                    176:          RT = AB*SQRT( TWO )
                    177:       END IF
                    178:       IF( SM.LT.ZERO ) THEN
                    179:          RT1 = HALF*( SM-RT )
                    180:          SGN1 = -1
                    181: *
                    182: *        Order of execution important.
                    183: *        To get fully accurate smaller eigenvalue,
                    184: *        next line needs to be executed in higher precision.
                    185: *
                    186:          RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
                    187:       ELSE IF( SM.GT.ZERO ) THEN
                    188:          RT1 = HALF*( SM+RT )
                    189:          SGN1 = 1
                    190: *
                    191: *        Order of execution important.
                    192: *        To get fully accurate smaller eigenvalue,
                    193: *        next line needs to be executed in higher precision.
                    194: *
                    195:          RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
                    196:       ELSE
                    197: *
                    198: *        Includes case RT1 = RT2 = 0
                    199: *
                    200:          RT1 = HALF*RT
                    201:          RT2 = -HALF*RT
                    202:          SGN1 = 1
                    203:       END IF
                    204: *
                    205: *     Compute the eigenvector
                    206: *
                    207:       IF( DF.GE.ZERO ) THEN
                    208:          CS = DF + RT
                    209:          SGN2 = 1
                    210:       ELSE
                    211:          CS = DF - RT
                    212:          SGN2 = -1
                    213:       END IF
                    214:       ACS = ABS( CS )
                    215:       IF( ACS.GT.AB ) THEN
                    216:          CT = -TB / CS
                    217:          SN1 = ONE / SQRT( ONE+CT*CT )
                    218:          CS1 = CT*SN1
                    219:       ELSE
                    220:          IF( AB.EQ.ZERO ) THEN
                    221:             CS1 = ONE
                    222:             SN1 = ZERO
                    223:          ELSE
                    224:             TN = -CS / TB
                    225:             CS1 = ONE / SQRT( ONE+TN*TN )
                    226:             SN1 = TN*CS1
                    227:          END IF
                    228:       END IF
                    229:       IF( SGN1.EQ.SGN2 ) THEN
                    230:          TN = CS1
                    231:          CS1 = -SN1
                    232:          SN1 = TN
                    233:       END IF
                    234:       RETURN
                    235: *
                    236: *     End of DLAEV2
                    237: *
                    238:       END

CVSweb interface <joel.bertrand@systella.fr>