Annotation of rpl/lapack/lapack/dlaev2.f, revision 1.14

1.11      bertrand    1: *> \brief \b DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLAEV2 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaev2.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaev2.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaev2.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       DOUBLE PRECISION   A, B, C, CS1, RT1, RT2, SN1
                     25: *       ..
                     26: *  
                     27: *
                     28: *> \par Purpose:
                     29: *  =============
                     30: *>
                     31: *> \verbatim
                     32: *>
                     33: *> DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
                     34: *>    [  A   B  ]
                     35: *>    [  B   C  ].
                     36: *> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
                     37: *> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
                     38: *> eigenvector for RT1, giving the decomposition
                     39: *>
                     40: *>    [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ]
                     41: *>    [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ].
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] A
                     48: *> \verbatim
                     49: *>          A is DOUBLE PRECISION
                     50: *>          The (1,1) element of the 2-by-2 matrix.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] B
                     54: *> \verbatim
                     55: *>          B is DOUBLE PRECISION
                     56: *>          The (1,2) element and the conjugate of the (2,1) element of
                     57: *>          the 2-by-2 matrix.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] C
                     61: *> \verbatim
                     62: *>          C is DOUBLE PRECISION
                     63: *>          The (2,2) element of the 2-by-2 matrix.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[out] RT1
                     67: *> \verbatim
                     68: *>          RT1 is DOUBLE PRECISION
                     69: *>          The eigenvalue of larger absolute value.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[out] RT2
                     73: *> \verbatim
                     74: *>          RT2 is DOUBLE PRECISION
                     75: *>          The eigenvalue of smaller absolute value.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[out] CS1
                     79: *> \verbatim
                     80: *>          CS1 is DOUBLE PRECISION
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[out] SN1
                     84: *> \verbatim
                     85: *>          SN1 is DOUBLE PRECISION
                     86: *>          The vector (CS1, SN1) is a unit right eigenvector for RT1.
                     87: *> \endverbatim
                     88: *
                     89: *  Authors:
                     90: *  ========
                     91: *
                     92: *> \author Univ. of Tennessee 
                     93: *> \author Univ. of California Berkeley 
                     94: *> \author Univ. of Colorado Denver 
                     95: *> \author NAG Ltd. 
                     96: *
1.11      bertrand   97: *> \date September 2012
1.8       bertrand   98: *
                     99: *> \ingroup auxOTHERauxiliary
                    100: *
                    101: *> \par Further Details:
                    102: *  =====================
                    103: *>
                    104: *> \verbatim
                    105: *>
                    106: *>  RT1 is accurate to a few ulps barring over/underflow.
                    107: *>
                    108: *>  RT2 may be inaccurate if there is massive cancellation in the
                    109: *>  determinant A*C-B*B; higher precision or correctly rounded or
                    110: *>  correctly truncated arithmetic would be needed to compute RT2
                    111: *>  accurately in all cases.
                    112: *>
                    113: *>  CS1 and SN1 are accurate to a few ulps barring over/underflow.
                    114: *>
                    115: *>  Overflow is possible only if RT1 is within a factor of 5 of overflow.
                    116: *>  Underflow is harmless if the input data is 0 or exceeds
                    117: *>     underflow_threshold / macheps.
                    118: *> \endverbatim
                    119: *>
                    120: *  =====================================================================
1.1       bertrand  121:       SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
                    122: *
1.11      bertrand  123: *  -- LAPACK auxiliary routine (version 3.4.2) --
1.1       bertrand  124: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    125: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11      bertrand  126: *     September 2012
1.1       bertrand  127: *
                    128: *     .. Scalar Arguments ..
                    129:       DOUBLE PRECISION   A, B, C, CS1, RT1, RT2, SN1
                    130: *     ..
                    131: *
                    132: * =====================================================================
                    133: *
                    134: *     .. Parameters ..
                    135:       DOUBLE PRECISION   ONE
                    136:       PARAMETER          ( ONE = 1.0D0 )
                    137:       DOUBLE PRECISION   TWO
                    138:       PARAMETER          ( TWO = 2.0D0 )
                    139:       DOUBLE PRECISION   ZERO
                    140:       PARAMETER          ( ZERO = 0.0D0 )
                    141:       DOUBLE PRECISION   HALF
                    142:       PARAMETER          ( HALF = 0.5D0 )
                    143: *     ..
                    144: *     .. Local Scalars ..
                    145:       INTEGER            SGN1, SGN2
                    146:       DOUBLE PRECISION   AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
                    147:      $                   TB, TN
                    148: *     ..
                    149: *     .. Intrinsic Functions ..
                    150:       INTRINSIC          ABS, SQRT
                    151: *     ..
                    152: *     .. Executable Statements ..
                    153: *
                    154: *     Compute the eigenvalues
                    155: *
                    156:       SM = A + C
                    157:       DF = A - C
                    158:       ADF = ABS( DF )
                    159:       TB = B + B
                    160:       AB = ABS( TB )
                    161:       IF( ABS( A ).GT.ABS( C ) ) THEN
                    162:          ACMX = A
                    163:          ACMN = C
                    164:       ELSE
                    165:          ACMX = C
                    166:          ACMN = A
                    167:       END IF
                    168:       IF( ADF.GT.AB ) THEN
                    169:          RT = ADF*SQRT( ONE+( AB / ADF )**2 )
                    170:       ELSE IF( ADF.LT.AB ) THEN
                    171:          RT = AB*SQRT( ONE+( ADF / AB )**2 )
                    172:       ELSE
                    173: *
                    174: *        Includes case AB=ADF=0
                    175: *
                    176:          RT = AB*SQRT( TWO )
                    177:       END IF
                    178:       IF( SM.LT.ZERO ) THEN
                    179:          RT1 = HALF*( SM-RT )
                    180:          SGN1 = -1
                    181: *
                    182: *        Order of execution important.
                    183: *        To get fully accurate smaller eigenvalue,
                    184: *        next line needs to be executed in higher precision.
                    185: *
                    186:          RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
                    187:       ELSE IF( SM.GT.ZERO ) THEN
                    188:          RT1 = HALF*( SM+RT )
                    189:          SGN1 = 1
                    190: *
                    191: *        Order of execution important.
                    192: *        To get fully accurate smaller eigenvalue,
                    193: *        next line needs to be executed in higher precision.
                    194: *
                    195:          RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
                    196:       ELSE
                    197: *
                    198: *        Includes case RT1 = RT2 = 0
                    199: *
                    200:          RT1 = HALF*RT
                    201:          RT2 = -HALF*RT
                    202:          SGN1 = 1
                    203:       END IF
                    204: *
                    205: *     Compute the eigenvector
                    206: *
                    207:       IF( DF.GE.ZERO ) THEN
                    208:          CS = DF + RT
                    209:          SGN2 = 1
                    210:       ELSE
                    211:          CS = DF - RT
                    212:          SGN2 = -1
                    213:       END IF
                    214:       ACS = ABS( CS )
                    215:       IF( ACS.GT.AB ) THEN
                    216:          CT = -TB / CS
                    217:          SN1 = ONE / SQRT( ONE+CT*CT )
                    218:          CS1 = CT*SN1
                    219:       ELSE
                    220:          IF( AB.EQ.ZERO ) THEN
                    221:             CS1 = ONE
                    222:             SN1 = ZERO
                    223:          ELSE
                    224:             TN = -CS / TB
                    225:             CS1 = ONE / SQRT( ONE+TN*TN )
                    226:             SN1 = TN*CS1
                    227:          END IF
                    228:       END IF
                    229:       IF( SGN1.EQ.SGN2 ) THEN
                    230:          TN = CS1
                    231:          CS1 = -SN1
                    232:          SN1 = TN
                    233:       END IF
                    234:       RETURN
                    235: *
                    236: *     End of DLAEV2
                    237: *
                    238:       END

CVSweb interface <joel.bertrand@systella.fr>