File:  [local] / rpl / lapack / lapack / dlaein.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:53 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAEIN + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaein.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaein.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaein.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
   22: *                          LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       LOGICAL            NOINIT, RIGHTV
   26: *       INTEGER            INFO, LDB, LDH, N
   27: *       DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
   31: *      $                   WORK( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DLAEIN uses inverse iteration to find a right or left eigenvector
   41: *> corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
   42: *> matrix H.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] RIGHTV
   49: *> \verbatim
   50: *>          RIGHTV is LOGICAL
   51: *>          = .TRUE. : compute right eigenvector;
   52: *>          = .FALSE.: compute left eigenvector.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] NOINIT
   56: *> \verbatim
   57: *>          NOINIT is LOGICAL
   58: *>          = .TRUE. : no initial vector supplied in (VR,VI).
   59: *>          = .FALSE.: initial vector supplied in (VR,VI).
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix H.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] H
   69: *> \verbatim
   70: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
   71: *>          The upper Hessenberg matrix H.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] LDH
   75: *> \verbatim
   76: *>          LDH is INTEGER
   77: *>          The leading dimension of the array H.  LDH >= max(1,N).
   78: *> \endverbatim
   79: *>
   80: *> \param[in] WR
   81: *> \verbatim
   82: *>          WR is DOUBLE PRECISION
   83: *> \endverbatim
   84: *>
   85: *> \param[in] WI
   86: *> \verbatim
   87: *>          WI is DOUBLE PRECISION
   88: *>          The real and imaginary parts of the eigenvalue of H whose
   89: *>          corresponding right or left eigenvector is to be computed.
   90: *> \endverbatim
   91: *>
   92: *> \param[in,out] VR
   93: *> \verbatim
   94: *>          VR is DOUBLE PRECISION array, dimension (N)
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] VI
   98: *> \verbatim
   99: *>          VI is DOUBLE PRECISION array, dimension (N)
  100: *>          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
  101: *>          a real starting vector for inverse iteration using the real
  102: *>          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
  103: *>          must contain the real and imaginary parts of a complex
  104: *>          starting vector for inverse iteration using the complex
  105: *>          eigenvalue (WR,WI); otherwise VR and VI need not be set.
  106: *>          On exit, if WI = 0.0 (real eigenvalue), VR contains the
  107: *>          computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
  108: *>          VR and VI contain the real and imaginary parts of the
  109: *>          computed complex eigenvector. The eigenvector is normalized
  110: *>          so that the component of largest magnitude has magnitude 1;
  111: *>          here the magnitude of a complex number (x,y) is taken to be
  112: *>          |x| + |y|.
  113: *>          VI is not referenced if WI = 0.0.
  114: *> \endverbatim
  115: *>
  116: *> \param[out] B
  117: *> \verbatim
  118: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
  119: *> \endverbatim
  120: *>
  121: *> \param[in] LDB
  122: *> \verbatim
  123: *>          LDB is INTEGER
  124: *>          The leading dimension of the array B.  LDB >= N+1.
  125: *> \endverbatim
  126: *>
  127: *> \param[out] WORK
  128: *> \verbatim
  129: *>          WORK is DOUBLE PRECISION array, dimension (N)
  130: *> \endverbatim
  131: *>
  132: *> \param[in] EPS3
  133: *> \verbatim
  134: *>          EPS3 is DOUBLE PRECISION
  135: *>          A small machine-dependent value which is used to perturb
  136: *>          close eigenvalues, and to replace zero pivots.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] SMLNUM
  140: *> \verbatim
  141: *>          SMLNUM is DOUBLE PRECISION
  142: *>          A machine-dependent value close to the underflow threshold.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] BIGNUM
  146: *> \verbatim
  147: *>          BIGNUM is DOUBLE PRECISION
  148: *>          A machine-dependent value close to the overflow threshold.
  149: *> \endverbatim
  150: *>
  151: *> \param[out] INFO
  152: *> \verbatim
  153: *>          INFO is INTEGER
  154: *>          = 0:  successful exit
  155: *>          = 1:  inverse iteration did not converge; VR is set to the
  156: *>                last iterate, and so is VI if WI.ne.0.0.
  157: *> \endverbatim
  158: *
  159: *  Authors:
  160: *  ========
  161: *
  162: *> \author Univ. of Tennessee
  163: *> \author Univ. of California Berkeley
  164: *> \author Univ. of Colorado Denver
  165: *> \author NAG Ltd.
  166: *
  167: *> \ingroup doubleOTHERauxiliary
  168: *
  169: *  =====================================================================
  170:       SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
  171:      $                   LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
  172: *
  173: *  -- LAPACK auxiliary routine --
  174: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  175: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  176: *
  177: *     .. Scalar Arguments ..
  178:       LOGICAL            NOINIT, RIGHTV
  179:       INTEGER            INFO, LDB, LDH, N
  180:       DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
  181: *     ..
  182: *     .. Array Arguments ..
  183:       DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
  184:      $                   WORK( * )
  185: *     ..
  186: *
  187: *  =====================================================================
  188: *
  189: *     .. Parameters ..
  190:       DOUBLE PRECISION   ZERO, ONE, TENTH
  191:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TENTH = 1.0D-1 )
  192: *     ..
  193: *     .. Local Scalars ..
  194:       CHARACTER          NORMIN, TRANS
  195:       INTEGER            I, I1, I2, I3, IERR, ITS, J
  196:       DOUBLE PRECISION   ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
  197:      $                   REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
  198:      $                   W1, X, XI, XR, Y
  199: *     ..
  200: *     .. External Functions ..
  201:       INTEGER            IDAMAX
  202:       DOUBLE PRECISION   DASUM, DLAPY2, DNRM2
  203:       EXTERNAL           IDAMAX, DASUM, DLAPY2, DNRM2
  204: *     ..
  205: *     .. External Subroutines ..
  206:       EXTERNAL           DLADIV, DLATRS, DSCAL
  207: *     ..
  208: *     .. Intrinsic Functions ..
  209:       INTRINSIC          ABS, DBLE, MAX, SQRT
  210: *     ..
  211: *     .. Executable Statements ..
  212: *
  213:       INFO = 0
  214: *
  215: *     GROWTO is the threshold used in the acceptance test for an
  216: *     eigenvector.
  217: *
  218:       ROOTN = SQRT( DBLE( N ) )
  219:       GROWTO = TENTH / ROOTN
  220:       NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
  221: *
  222: *     Form B = H - (WR,WI)*I (except that the subdiagonal elements and
  223: *     the imaginary parts of the diagonal elements are not stored).
  224: *
  225:       DO 20 J = 1, N
  226:          DO 10 I = 1, J - 1
  227:             B( I, J ) = H( I, J )
  228:    10    CONTINUE
  229:          B( J, J ) = H( J, J ) - WR
  230:    20 CONTINUE
  231: *
  232:       IF( WI.EQ.ZERO ) THEN
  233: *
  234: *        Real eigenvalue.
  235: *
  236:          IF( NOINIT ) THEN
  237: *
  238: *           Set initial vector.
  239: *
  240:             DO 30 I = 1, N
  241:                VR( I ) = EPS3
  242:    30       CONTINUE
  243:          ELSE
  244: *
  245: *           Scale supplied initial vector.
  246: *
  247:             VNORM = DNRM2( N, VR, 1 )
  248:             CALL DSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR,
  249:      $                  1 )
  250:          END IF
  251: *
  252:          IF( RIGHTV ) THEN
  253: *
  254: *           LU decomposition with partial pivoting of B, replacing zero
  255: *           pivots by EPS3.
  256: *
  257:             DO 60 I = 1, N - 1
  258:                EI = H( I+1, I )
  259:                IF( ABS( B( I, I ) ).LT.ABS( EI ) ) THEN
  260: *
  261: *                 Interchange rows and eliminate.
  262: *
  263:                   X = B( I, I ) / EI
  264:                   B( I, I ) = EI
  265:                   DO 40 J = I + 1, N
  266:                      TEMP = B( I+1, J )
  267:                      B( I+1, J ) = B( I, J ) - X*TEMP
  268:                      B( I, J ) = TEMP
  269:    40             CONTINUE
  270:                ELSE
  271: *
  272: *                 Eliminate without interchange.
  273: *
  274:                   IF( B( I, I ).EQ.ZERO )
  275:      $               B( I, I ) = EPS3
  276:                   X = EI / B( I, I )
  277:                   IF( X.NE.ZERO ) THEN
  278:                      DO 50 J = I + 1, N
  279:                         B( I+1, J ) = B( I+1, J ) - X*B( I, J )
  280:    50                CONTINUE
  281:                   END IF
  282:                END IF
  283:    60       CONTINUE
  284:             IF( B( N, N ).EQ.ZERO )
  285:      $         B( N, N ) = EPS3
  286: *
  287:             TRANS = 'N'
  288: *
  289:          ELSE
  290: *
  291: *           UL decomposition with partial pivoting of B, replacing zero
  292: *           pivots by EPS3.
  293: *
  294:             DO 90 J = N, 2, -1
  295:                EJ = H( J, J-1 )
  296:                IF( ABS( B( J, J ) ).LT.ABS( EJ ) ) THEN
  297: *
  298: *                 Interchange columns and eliminate.
  299: *
  300:                   X = B( J, J ) / EJ
  301:                   B( J, J ) = EJ
  302:                   DO 70 I = 1, J - 1
  303:                      TEMP = B( I, J-1 )
  304:                      B( I, J-1 ) = B( I, J ) - X*TEMP
  305:                      B( I, J ) = TEMP
  306:    70             CONTINUE
  307:                ELSE
  308: *
  309: *                 Eliminate without interchange.
  310: *
  311:                   IF( B( J, J ).EQ.ZERO )
  312:      $               B( J, J ) = EPS3
  313:                   X = EJ / B( J, J )
  314:                   IF( X.NE.ZERO ) THEN
  315:                      DO 80 I = 1, J - 1
  316:                         B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
  317:    80                CONTINUE
  318:                   END IF
  319:                END IF
  320:    90       CONTINUE
  321:             IF( B( 1, 1 ).EQ.ZERO )
  322:      $         B( 1, 1 ) = EPS3
  323: *
  324:             TRANS = 'T'
  325: *
  326:          END IF
  327: *
  328:          NORMIN = 'N'
  329:          DO 110 ITS = 1, N
  330: *
  331: *           Solve U*x = scale*v for a right eigenvector
  332: *             or U**T*x = scale*v for a left eigenvector,
  333: *           overwriting x on v.
  334: *
  335:             CALL DLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB,
  336:      $                   VR, SCALE, WORK, IERR )
  337:             NORMIN = 'Y'
  338: *
  339: *           Test for sufficient growth in the norm of v.
  340: *
  341:             VNORM = DASUM( N, VR, 1 )
  342:             IF( VNORM.GE.GROWTO*SCALE )
  343:      $         GO TO 120
  344: *
  345: *           Choose new orthogonal starting vector and try again.
  346: *
  347:             TEMP = EPS3 / ( ROOTN+ONE )
  348:             VR( 1 ) = EPS3
  349:             DO 100 I = 2, N
  350:                VR( I ) = TEMP
  351:   100       CONTINUE
  352:             VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
  353:   110    CONTINUE
  354: *
  355: *        Failure to find eigenvector in N iterations.
  356: *
  357:          INFO = 1
  358: *
  359:   120    CONTINUE
  360: *
  361: *        Normalize eigenvector.
  362: *
  363:          I = IDAMAX( N, VR, 1 )
  364:          CALL DSCAL( N, ONE / ABS( VR( I ) ), VR, 1 )
  365:       ELSE
  366: *
  367: *        Complex eigenvalue.
  368: *
  369:          IF( NOINIT ) THEN
  370: *
  371: *           Set initial vector.
  372: *
  373:             DO 130 I = 1, N
  374:                VR( I ) = EPS3
  375:                VI( I ) = ZERO
  376:   130       CONTINUE
  377:          ELSE
  378: *
  379: *           Scale supplied initial vector.
  380: *
  381:             NORM = DLAPY2( DNRM2( N, VR, 1 ), DNRM2( N, VI, 1 ) )
  382:             REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML )
  383:             CALL DSCAL( N, REC, VR, 1 )
  384:             CALL DSCAL( N, REC, VI, 1 )
  385:          END IF
  386: *
  387:          IF( RIGHTV ) THEN
  388: *
  389: *           LU decomposition with partial pivoting of B, replacing zero
  390: *           pivots by EPS3.
  391: *
  392: *           The imaginary part of the (i,j)-th element of U is stored in
  393: *           B(j+1,i).
  394: *
  395:             B( 2, 1 ) = -WI
  396:             DO 140 I = 2, N
  397:                B( I+1, 1 ) = ZERO
  398:   140       CONTINUE
  399: *
  400:             DO 170 I = 1, N - 1
  401:                ABSBII = DLAPY2( B( I, I ), B( I+1, I ) )
  402:                EI = H( I+1, I )
  403:                IF( ABSBII.LT.ABS( EI ) ) THEN
  404: *
  405: *                 Interchange rows and eliminate.
  406: *
  407:                   XR = B( I, I ) / EI
  408:                   XI = B( I+1, I ) / EI
  409:                   B( I, I ) = EI
  410:                   B( I+1, I ) = ZERO
  411:                   DO 150 J = I + 1, N
  412:                      TEMP = B( I+1, J )
  413:                      B( I+1, J ) = B( I, J ) - XR*TEMP
  414:                      B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP
  415:                      B( I, J ) = TEMP
  416:                      B( J+1, I ) = ZERO
  417:   150             CONTINUE
  418:                   B( I+2, I ) = -WI
  419:                   B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI
  420:                   B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI
  421:                ELSE
  422: *
  423: *                 Eliminate without interchanging rows.
  424: *
  425:                   IF( ABSBII.EQ.ZERO ) THEN
  426:                      B( I, I ) = EPS3
  427:                      B( I+1, I ) = ZERO
  428:                      ABSBII = EPS3
  429:                   END IF
  430:                   EI = ( EI / ABSBII ) / ABSBII
  431:                   XR = B( I, I )*EI
  432:                   XI = -B( I+1, I )*EI
  433:                   DO 160 J = I + 1, N
  434:                      B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) +
  435:      $                             XI*B( J+1, I )
  436:                      B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J )
  437:   160             CONTINUE
  438:                   B( I+2, I+1 ) = B( I+2, I+1 ) - WI
  439:                END IF
  440: *
  441: *              Compute 1-norm of offdiagonal elements of i-th row.
  442: *
  443:                WORK( I ) = DASUM( N-I, B( I, I+1 ), LDB ) +
  444:      $                     DASUM( N-I, B( I+2, I ), 1 )
  445:   170       CONTINUE
  446:             IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO )
  447:      $         B( N, N ) = EPS3
  448:             WORK( N ) = ZERO
  449: *
  450:             I1 = N
  451:             I2 = 1
  452:             I3 = -1
  453:          ELSE
  454: *
  455: *           UL decomposition with partial pivoting of conjg(B),
  456: *           replacing zero pivots by EPS3.
  457: *
  458: *           The imaginary part of the (i,j)-th element of U is stored in
  459: *           B(j+1,i).
  460: *
  461:             B( N+1, N ) = WI
  462:             DO 180 J = 1, N - 1
  463:                B( N+1, J ) = ZERO
  464:   180       CONTINUE
  465: *
  466:             DO 210 J = N, 2, -1
  467:                EJ = H( J, J-1 )
  468:                ABSBJJ = DLAPY2( B( J, J ), B( J+1, J ) )
  469:                IF( ABSBJJ.LT.ABS( EJ ) ) THEN
  470: *
  471: *                 Interchange columns and eliminate
  472: *
  473:                   XR = B( J, J ) / EJ
  474:                   XI = B( J+1, J ) / EJ
  475:                   B( J, J ) = EJ
  476:                   B( J+1, J ) = ZERO
  477:                   DO 190 I = 1, J - 1
  478:                      TEMP = B( I, J-1 )
  479:                      B( I, J-1 ) = B( I, J ) - XR*TEMP
  480:                      B( J, I ) = B( J+1, I ) - XI*TEMP
  481:                      B( I, J ) = TEMP
  482:                      B( J+1, I ) = ZERO
  483:   190             CONTINUE
  484:                   B( J+1, J-1 ) = WI
  485:                   B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI
  486:                   B( J, J-1 ) = B( J, J-1 ) - XR*WI
  487:                ELSE
  488: *
  489: *                 Eliminate without interchange.
  490: *
  491:                   IF( ABSBJJ.EQ.ZERO ) THEN
  492:                      B( J, J ) = EPS3
  493:                      B( J+1, J ) = ZERO
  494:                      ABSBJJ = EPS3
  495:                   END IF
  496:                   EJ = ( EJ / ABSBJJ ) / ABSBJJ
  497:                   XR = B( J, J )*EJ
  498:                   XI = -B( J+1, J )*EJ
  499:                   DO 200 I = 1, J - 1
  500:                      B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) +
  501:      $                             XI*B( J+1, I )
  502:                      B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J )
  503:   200             CONTINUE
  504:                   B( J, J-1 ) = B( J, J-1 ) + WI
  505:                END IF
  506: *
  507: *              Compute 1-norm of offdiagonal elements of j-th column.
  508: *
  509:                WORK( J ) = DASUM( J-1, B( 1, J ), 1 ) +
  510:      $                     DASUM( J-1, B( J+1, 1 ), LDB )
  511:   210       CONTINUE
  512:             IF( B( 1, 1 ).EQ.ZERO .AND. B( 2, 1 ).EQ.ZERO )
  513:      $         B( 1, 1 ) = EPS3
  514:             WORK( 1 ) = ZERO
  515: *
  516:             I1 = 1
  517:             I2 = N
  518:             I3 = 1
  519:          END IF
  520: *
  521:          DO 270 ITS = 1, N
  522:             SCALE = ONE
  523:             VMAX = ONE
  524:             VCRIT = BIGNUM
  525: *
  526: *           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector,
  527: *             or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector,
  528: *           overwriting (xr,xi) on (vr,vi).
  529: *
  530:             DO 250 I = I1, I2, I3
  531: *
  532:                IF( WORK( I ).GT.VCRIT ) THEN
  533:                   REC = ONE / VMAX
  534:                   CALL DSCAL( N, REC, VR, 1 )
  535:                   CALL DSCAL( N, REC, VI, 1 )
  536:                   SCALE = SCALE*REC
  537:                   VMAX = ONE
  538:                   VCRIT = BIGNUM
  539:                END IF
  540: *
  541:                XR = VR( I )
  542:                XI = VI( I )
  543:                IF( RIGHTV ) THEN
  544:                   DO 220 J = I + 1, N
  545:                      XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J )
  546:                      XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J )
  547:   220             CONTINUE
  548:                ELSE
  549:                   DO 230 J = 1, I - 1
  550:                      XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J )
  551:                      XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J )
  552:   230             CONTINUE
  553:                END IF
  554: *
  555:                W = ABS( B( I, I ) ) + ABS( B( I+1, I ) )
  556:                IF( W.GT.SMLNUM ) THEN
  557:                   IF( W.LT.ONE ) THEN
  558:                      W1 = ABS( XR ) + ABS( XI )
  559:                      IF( W1.GT.W*BIGNUM ) THEN
  560:                         REC = ONE / W1
  561:                         CALL DSCAL( N, REC, VR, 1 )
  562:                         CALL DSCAL( N, REC, VI, 1 )
  563:                         XR = VR( I )
  564:                         XI = VI( I )
  565:                         SCALE = SCALE*REC
  566:                         VMAX = VMAX*REC
  567:                      END IF
  568:                   END IF
  569: *
  570: *                 Divide by diagonal element of B.
  571: *
  572:                   CALL DLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ),
  573:      $                         VI( I ) )
  574:                   VMAX = MAX( ABS( VR( I ) )+ABS( VI( I ) ), VMAX )
  575:                   VCRIT = BIGNUM / VMAX
  576:                ELSE
  577:                   DO 240 J = 1, N
  578:                      VR( J ) = ZERO
  579:                      VI( J ) = ZERO
  580:   240             CONTINUE
  581:                   VR( I ) = ONE
  582:                   VI( I ) = ONE
  583:                   SCALE = ZERO
  584:                   VMAX = ONE
  585:                   VCRIT = BIGNUM
  586:                END IF
  587:   250       CONTINUE
  588: *
  589: *           Test for sufficient growth in the norm of (VR,VI).
  590: *
  591:             VNORM = DASUM( N, VR, 1 ) + DASUM( N, VI, 1 )
  592:             IF( VNORM.GE.GROWTO*SCALE )
  593:      $         GO TO 280
  594: *
  595: *           Choose a new orthogonal starting vector and try again.
  596: *
  597:             Y = EPS3 / ( ROOTN+ONE )
  598:             VR( 1 ) = EPS3
  599:             VI( 1 ) = ZERO
  600: *
  601:             DO 260 I = 2, N
  602:                VR( I ) = Y
  603:                VI( I ) = ZERO
  604:   260       CONTINUE
  605:             VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
  606:   270    CONTINUE
  607: *
  608: *        Failure to find eigenvector in N iterations
  609: *
  610:          INFO = 1
  611: *
  612:   280    CONTINUE
  613: *
  614: *        Normalize eigenvector.
  615: *
  616:          VNORM = ZERO
  617:          DO 290 I = 1, N
  618:             VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) )
  619:   290    CONTINUE
  620:          CALL DSCAL( N, ONE / VNORM, VR, 1 )
  621:          CALL DSCAL( N, ONE / VNORM, VI, 1 )
  622: *
  623:       END IF
  624: *
  625:       RETURN
  626: *
  627: *     End of DLAEIN
  628: *
  629:       END

CVSweb interface <joel.bertrand@systella.fr>