File:  [local] / rpl / lapack / lapack / dlaein.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:32 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b DLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLAEIN + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaein.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaein.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaein.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
   22: *                          LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       LOGICAL            NOINIT, RIGHTV
   26: *       INTEGER            INFO, LDB, LDH, N
   27: *       DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
   31: *      $                   WORK( * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DLAEIN uses inverse iteration to find a right or left eigenvector
   41: *> corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
   42: *> matrix H.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] RIGHTV
   49: *> \verbatim
   50: *>          RIGHTV is LOGICAL
   51: *>          = .TRUE. : compute right eigenvector;
   52: *>          = .FALSE.: compute left eigenvector.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] NOINIT
   56: *> \verbatim
   57: *>          NOINIT is LOGICAL
   58: *>          = .TRUE. : no initial vector supplied in (VR,VI).
   59: *>          = .FALSE.: initial vector supplied in (VR,VI).
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix H.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] H
   69: *> \verbatim
   70: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
   71: *>          The upper Hessenberg matrix H.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] LDH
   75: *> \verbatim
   76: *>          LDH is INTEGER
   77: *>          The leading dimension of the array H.  LDH >= max(1,N).
   78: *> \endverbatim
   79: *>
   80: *> \param[in] WR
   81: *> \verbatim
   82: *>          WR is DOUBLE PRECISION
   83: *> \endverbatim
   84: *>
   85: *> \param[in] WI
   86: *> \verbatim
   87: *>          WI is DOUBLE PRECISION
   88: *>          The real and imaginary parts of the eigenvalue of H whose
   89: *>          corresponding right or left eigenvector is to be computed.
   90: *> \endverbatim
   91: *>
   92: *> \param[in,out] VR
   93: *> \verbatim
   94: *>          VR is DOUBLE PRECISION array, dimension (N)
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] VI
   98: *> \verbatim
   99: *>          VI is DOUBLE PRECISION array, dimension (N)
  100: *>          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
  101: *>          a real starting vector for inverse iteration using the real
  102: *>          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
  103: *>          must contain the real and imaginary parts of a complex
  104: *>          starting vector for inverse iteration using the complex
  105: *>          eigenvalue (WR,WI); otherwise VR and VI need not be set.
  106: *>          On exit, if WI = 0.0 (real eigenvalue), VR contains the
  107: *>          computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
  108: *>          VR and VI contain the real and imaginary parts of the
  109: *>          computed complex eigenvector. The eigenvector is normalized
  110: *>          so that the component of largest magnitude has magnitude 1;
  111: *>          here the magnitude of a complex number (x,y) is taken to be
  112: *>          |x| + |y|.
  113: *>          VI is not referenced if WI = 0.0.
  114: *> \endverbatim
  115: *>
  116: *> \param[out] B
  117: *> \verbatim
  118: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
  119: *> \endverbatim
  120: *>
  121: *> \param[in] LDB
  122: *> \verbatim
  123: *>          LDB is INTEGER
  124: *>          The leading dimension of the array B.  LDB >= N+1.
  125: *> \endverbatim
  126: *>
  127: *> \param[out] WORK
  128: *> \verbatim
  129: *>          WORK is DOUBLE PRECISION array, dimension (N)
  130: *> \endverbatim
  131: *>
  132: *> \param[in] EPS3
  133: *> \verbatim
  134: *>          EPS3 is DOUBLE PRECISION
  135: *>          A small machine-dependent value which is used to perturb
  136: *>          close eigenvalues, and to replace zero pivots.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] SMLNUM
  140: *> \verbatim
  141: *>          SMLNUM is DOUBLE PRECISION
  142: *>          A machine-dependent value close to the underflow threshold.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] BIGNUM
  146: *> \verbatim
  147: *>          BIGNUM is DOUBLE PRECISION
  148: *>          A machine-dependent value close to the overflow threshold.
  149: *> \endverbatim
  150: *>
  151: *> \param[out] INFO
  152: *> \verbatim
  153: *>          INFO is INTEGER
  154: *>          = 0:  successful exit
  155: *>          = 1:  inverse iteration did not converge; VR is set to the
  156: *>                last iterate, and so is VI if WI.ne.0.0.
  157: *> \endverbatim
  158: *
  159: *  Authors:
  160: *  ========
  161: *
  162: *> \author Univ. of Tennessee 
  163: *> \author Univ. of California Berkeley 
  164: *> \author Univ. of Colorado Denver 
  165: *> \author NAG Ltd. 
  166: *
  167: *> \date September 2012
  168: *
  169: *> \ingroup doubleOTHERauxiliary
  170: *
  171: *  =====================================================================
  172:       SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
  173:      $                   LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
  174: *
  175: *  -- LAPACK auxiliary routine (version 3.4.2) --
  176: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  177: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  178: *     September 2012
  179: *
  180: *     .. Scalar Arguments ..
  181:       LOGICAL            NOINIT, RIGHTV
  182:       INTEGER            INFO, LDB, LDH, N
  183:       DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
  184: *     ..
  185: *     .. Array Arguments ..
  186:       DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
  187:      $                   WORK( * )
  188: *     ..
  189: *
  190: *  =====================================================================
  191: *
  192: *     .. Parameters ..
  193:       DOUBLE PRECISION   ZERO, ONE, TENTH
  194:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TENTH = 1.0D-1 )
  195: *     ..
  196: *     .. Local Scalars ..
  197:       CHARACTER          NORMIN, TRANS
  198:       INTEGER            I, I1, I2, I3, IERR, ITS, J
  199:       DOUBLE PRECISION   ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
  200:      $                   REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
  201:      $                   W1, X, XI, XR, Y
  202: *     ..
  203: *     .. External Functions ..
  204:       INTEGER            IDAMAX
  205:       DOUBLE PRECISION   DASUM, DLAPY2, DNRM2
  206:       EXTERNAL           IDAMAX, DASUM, DLAPY2, DNRM2
  207: *     ..
  208: *     .. External Subroutines ..
  209:       EXTERNAL           DLADIV, DLATRS, DSCAL
  210: *     ..
  211: *     .. Intrinsic Functions ..
  212:       INTRINSIC          ABS, DBLE, MAX, SQRT
  213: *     ..
  214: *     .. Executable Statements ..
  215: *
  216:       INFO = 0
  217: *
  218: *     GROWTO is the threshold used in the acceptance test for an
  219: *     eigenvector.
  220: *
  221:       ROOTN = SQRT( DBLE( N ) )
  222:       GROWTO = TENTH / ROOTN
  223:       NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
  224: *
  225: *     Form B = H - (WR,WI)*I (except that the subdiagonal elements and
  226: *     the imaginary parts of the diagonal elements are not stored).
  227: *
  228:       DO 20 J = 1, N
  229:          DO 10 I = 1, J - 1
  230:             B( I, J ) = H( I, J )
  231:    10    CONTINUE
  232:          B( J, J ) = H( J, J ) - WR
  233:    20 CONTINUE
  234: *
  235:       IF( WI.EQ.ZERO ) THEN
  236: *
  237: *        Real eigenvalue.
  238: *
  239:          IF( NOINIT ) THEN
  240: *
  241: *           Set initial vector.
  242: *
  243:             DO 30 I = 1, N
  244:                VR( I ) = EPS3
  245:    30       CONTINUE
  246:          ELSE
  247: *
  248: *           Scale supplied initial vector.
  249: *
  250:             VNORM = DNRM2( N, VR, 1 )
  251:             CALL DSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR,
  252:      $                  1 )
  253:          END IF
  254: *
  255:          IF( RIGHTV ) THEN
  256: *
  257: *           LU decomposition with partial pivoting of B, replacing zero
  258: *           pivots by EPS3.
  259: *
  260:             DO 60 I = 1, N - 1
  261:                EI = H( I+1, I )
  262:                IF( ABS( B( I, I ) ).LT.ABS( EI ) ) THEN
  263: *
  264: *                 Interchange rows and eliminate.
  265: *
  266:                   X = B( I, I ) / EI
  267:                   B( I, I ) = EI
  268:                   DO 40 J = I + 1, N
  269:                      TEMP = B( I+1, J )
  270:                      B( I+1, J ) = B( I, J ) - X*TEMP
  271:                      B( I, J ) = TEMP
  272:    40             CONTINUE
  273:                ELSE
  274: *
  275: *                 Eliminate without interchange.
  276: *
  277:                   IF( B( I, I ).EQ.ZERO )
  278:      $               B( I, I ) = EPS3
  279:                   X = EI / B( I, I )
  280:                   IF( X.NE.ZERO ) THEN
  281:                      DO 50 J = I + 1, N
  282:                         B( I+1, J ) = B( I+1, J ) - X*B( I, J )
  283:    50                CONTINUE
  284:                   END IF
  285:                END IF
  286:    60       CONTINUE
  287:             IF( B( N, N ).EQ.ZERO )
  288:      $         B( N, N ) = EPS3
  289: *
  290:             TRANS = 'N'
  291: *
  292:          ELSE
  293: *
  294: *           UL decomposition with partial pivoting of B, replacing zero
  295: *           pivots by EPS3.
  296: *
  297:             DO 90 J = N, 2, -1
  298:                EJ = H( J, J-1 )
  299:                IF( ABS( B( J, J ) ).LT.ABS( EJ ) ) THEN
  300: *
  301: *                 Interchange columns and eliminate.
  302: *
  303:                   X = B( J, J ) / EJ
  304:                   B( J, J ) = EJ
  305:                   DO 70 I = 1, J - 1
  306:                      TEMP = B( I, J-1 )
  307:                      B( I, J-1 ) = B( I, J ) - X*TEMP
  308:                      B( I, J ) = TEMP
  309:    70             CONTINUE
  310:                ELSE
  311: *
  312: *                 Eliminate without interchange.
  313: *
  314:                   IF( B( J, J ).EQ.ZERO )
  315:      $               B( J, J ) = EPS3
  316:                   X = EJ / B( J, J )
  317:                   IF( X.NE.ZERO ) THEN
  318:                      DO 80 I = 1, J - 1
  319:                         B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
  320:    80                CONTINUE
  321:                   END IF
  322:                END IF
  323:    90       CONTINUE
  324:             IF( B( 1, 1 ).EQ.ZERO )
  325:      $         B( 1, 1 ) = EPS3
  326: *
  327:             TRANS = 'T'
  328: *
  329:          END IF
  330: *
  331:          NORMIN = 'N'
  332:          DO 110 ITS = 1, N
  333: *
  334: *           Solve U*x = scale*v for a right eigenvector
  335: *             or U**T*x = scale*v for a left eigenvector,
  336: *           overwriting x on v.
  337: *
  338:             CALL DLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB,
  339:      $                   VR, SCALE, WORK, IERR )
  340:             NORMIN = 'Y'
  341: *
  342: *           Test for sufficient growth in the norm of v.
  343: *
  344:             VNORM = DASUM( N, VR, 1 )
  345:             IF( VNORM.GE.GROWTO*SCALE )
  346:      $         GO TO 120
  347: *
  348: *           Choose new orthogonal starting vector and try again.
  349: *
  350:             TEMP = EPS3 / ( ROOTN+ONE )
  351:             VR( 1 ) = EPS3
  352:             DO 100 I = 2, N
  353:                VR( I ) = TEMP
  354:   100       CONTINUE
  355:             VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
  356:   110    CONTINUE
  357: *
  358: *        Failure to find eigenvector in N iterations.
  359: *
  360:          INFO = 1
  361: *
  362:   120    CONTINUE
  363: *
  364: *        Normalize eigenvector.
  365: *
  366:          I = IDAMAX( N, VR, 1 )
  367:          CALL DSCAL( N, ONE / ABS( VR( I ) ), VR, 1 )
  368:       ELSE
  369: *
  370: *        Complex eigenvalue.
  371: *
  372:          IF( NOINIT ) THEN
  373: *
  374: *           Set initial vector.
  375: *
  376:             DO 130 I = 1, N
  377:                VR( I ) = EPS3
  378:                VI( I ) = ZERO
  379:   130       CONTINUE
  380:          ELSE
  381: *
  382: *           Scale supplied initial vector.
  383: *
  384:             NORM = DLAPY2( DNRM2( N, VR, 1 ), DNRM2( N, VI, 1 ) )
  385:             REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML )
  386:             CALL DSCAL( N, REC, VR, 1 )
  387:             CALL DSCAL( N, REC, VI, 1 )
  388:          END IF
  389: *
  390:          IF( RIGHTV ) THEN
  391: *
  392: *           LU decomposition with partial pivoting of B, replacing zero
  393: *           pivots by EPS3.
  394: *
  395: *           The imaginary part of the (i,j)-th element of U is stored in
  396: *           B(j+1,i).
  397: *
  398:             B( 2, 1 ) = -WI
  399:             DO 140 I = 2, N
  400:                B( I+1, 1 ) = ZERO
  401:   140       CONTINUE
  402: *
  403:             DO 170 I = 1, N - 1
  404:                ABSBII = DLAPY2( B( I, I ), B( I+1, I ) )
  405:                EI = H( I+1, I )
  406:                IF( ABSBII.LT.ABS( EI ) ) THEN
  407: *
  408: *                 Interchange rows and eliminate.
  409: *
  410:                   XR = B( I, I ) / EI
  411:                   XI = B( I+1, I ) / EI
  412:                   B( I, I ) = EI
  413:                   B( I+1, I ) = ZERO
  414:                   DO 150 J = I + 1, N
  415:                      TEMP = B( I+1, J )
  416:                      B( I+1, J ) = B( I, J ) - XR*TEMP
  417:                      B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP
  418:                      B( I, J ) = TEMP
  419:                      B( J+1, I ) = ZERO
  420:   150             CONTINUE
  421:                   B( I+2, I ) = -WI
  422:                   B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI
  423:                   B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI
  424:                ELSE
  425: *
  426: *                 Eliminate without interchanging rows.
  427: *
  428:                   IF( ABSBII.EQ.ZERO ) THEN
  429:                      B( I, I ) = EPS3
  430:                      B( I+1, I ) = ZERO
  431:                      ABSBII = EPS3
  432:                   END IF
  433:                   EI = ( EI / ABSBII ) / ABSBII
  434:                   XR = B( I, I )*EI
  435:                   XI = -B( I+1, I )*EI
  436:                   DO 160 J = I + 1, N
  437:                      B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) +
  438:      $                             XI*B( J+1, I )
  439:                      B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J )
  440:   160             CONTINUE
  441:                   B( I+2, I+1 ) = B( I+2, I+1 ) - WI
  442:                END IF
  443: *
  444: *              Compute 1-norm of offdiagonal elements of i-th row.
  445: *
  446:                WORK( I ) = DASUM( N-I, B( I, I+1 ), LDB ) +
  447:      $                     DASUM( N-I, B( I+2, I ), 1 )
  448:   170       CONTINUE
  449:             IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO )
  450:      $         B( N, N ) = EPS3
  451:             WORK( N ) = ZERO
  452: *
  453:             I1 = N
  454:             I2 = 1
  455:             I3 = -1
  456:          ELSE
  457: *
  458: *           UL decomposition with partial pivoting of conjg(B),
  459: *           replacing zero pivots by EPS3.
  460: *
  461: *           The imaginary part of the (i,j)-th element of U is stored in
  462: *           B(j+1,i).
  463: *
  464:             B( N+1, N ) = WI
  465:             DO 180 J = 1, N - 1
  466:                B( N+1, J ) = ZERO
  467:   180       CONTINUE
  468: *
  469:             DO 210 J = N, 2, -1
  470:                EJ = H( J, J-1 )
  471:                ABSBJJ = DLAPY2( B( J, J ), B( J+1, J ) )
  472:                IF( ABSBJJ.LT.ABS( EJ ) ) THEN
  473: *
  474: *                 Interchange columns and eliminate
  475: *
  476:                   XR = B( J, J ) / EJ
  477:                   XI = B( J+1, J ) / EJ
  478:                   B( J, J ) = EJ
  479:                   B( J+1, J ) = ZERO
  480:                   DO 190 I = 1, J - 1
  481:                      TEMP = B( I, J-1 )
  482:                      B( I, J-1 ) = B( I, J ) - XR*TEMP
  483:                      B( J, I ) = B( J+1, I ) - XI*TEMP
  484:                      B( I, J ) = TEMP
  485:                      B( J+1, I ) = ZERO
  486:   190             CONTINUE
  487:                   B( J+1, J-1 ) = WI
  488:                   B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI
  489:                   B( J, J-1 ) = B( J, J-1 ) - XR*WI
  490:                ELSE
  491: *
  492: *                 Eliminate without interchange.
  493: *
  494:                   IF( ABSBJJ.EQ.ZERO ) THEN
  495:                      B( J, J ) = EPS3
  496:                      B( J+1, J ) = ZERO
  497:                      ABSBJJ = EPS3
  498:                   END IF
  499:                   EJ = ( EJ / ABSBJJ ) / ABSBJJ
  500:                   XR = B( J, J )*EJ
  501:                   XI = -B( J+1, J )*EJ
  502:                   DO 200 I = 1, J - 1
  503:                      B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) +
  504:      $                             XI*B( J+1, I )
  505:                      B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J )
  506:   200             CONTINUE
  507:                   B( J, J-1 ) = B( J, J-1 ) + WI
  508:                END IF
  509: *
  510: *              Compute 1-norm of offdiagonal elements of j-th column.
  511: *
  512:                WORK( J ) = DASUM( J-1, B( 1, J ), 1 ) +
  513:      $                     DASUM( J-1, B( J+1, 1 ), LDB )
  514:   210       CONTINUE
  515:             IF( B( 1, 1 ).EQ.ZERO .AND. B( 2, 1 ).EQ.ZERO )
  516:      $         B( 1, 1 ) = EPS3
  517:             WORK( 1 ) = ZERO
  518: *
  519:             I1 = 1
  520:             I2 = N
  521:             I3 = 1
  522:          END IF
  523: *
  524:          DO 270 ITS = 1, N
  525:             SCALE = ONE
  526:             VMAX = ONE
  527:             VCRIT = BIGNUM
  528: *
  529: *           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector,
  530: *             or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector,
  531: *           overwriting (xr,xi) on (vr,vi).
  532: *
  533:             DO 250 I = I1, I2, I3
  534: *
  535:                IF( WORK( I ).GT.VCRIT ) THEN
  536:                   REC = ONE / VMAX
  537:                   CALL DSCAL( N, REC, VR, 1 )
  538:                   CALL DSCAL( N, REC, VI, 1 )
  539:                   SCALE = SCALE*REC
  540:                   VMAX = ONE
  541:                   VCRIT = BIGNUM
  542:                END IF
  543: *
  544:                XR = VR( I )
  545:                XI = VI( I )
  546:                IF( RIGHTV ) THEN
  547:                   DO 220 J = I + 1, N
  548:                      XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J )
  549:                      XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J )
  550:   220             CONTINUE
  551:                ELSE
  552:                   DO 230 J = 1, I - 1
  553:                      XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J )
  554:                      XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J )
  555:   230             CONTINUE
  556:                END IF
  557: *
  558:                W = ABS( B( I, I ) ) + ABS( B( I+1, I ) )
  559:                IF( W.GT.SMLNUM ) THEN
  560:                   IF( W.LT.ONE ) THEN
  561:                      W1 = ABS( XR ) + ABS( XI )
  562:                      IF( W1.GT.W*BIGNUM ) THEN
  563:                         REC = ONE / W1
  564:                         CALL DSCAL( N, REC, VR, 1 )
  565:                         CALL DSCAL( N, REC, VI, 1 )
  566:                         XR = VR( I )
  567:                         XI = VI( I )
  568:                         SCALE = SCALE*REC
  569:                         VMAX = VMAX*REC
  570:                      END IF
  571:                   END IF
  572: *
  573: *                 Divide by diagonal element of B.
  574: *
  575:                   CALL DLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ),
  576:      $                         VI( I ) )
  577:                   VMAX = MAX( ABS( VR( I ) )+ABS( VI( I ) ), VMAX )
  578:                   VCRIT = BIGNUM / VMAX
  579:                ELSE
  580:                   DO 240 J = 1, N
  581:                      VR( J ) = ZERO
  582:                      VI( J ) = ZERO
  583:   240             CONTINUE
  584:                   VR( I ) = ONE
  585:                   VI( I ) = ONE
  586:                   SCALE = ZERO
  587:                   VMAX = ONE
  588:                   VCRIT = BIGNUM
  589:                END IF
  590:   250       CONTINUE
  591: *
  592: *           Test for sufficient growth in the norm of (VR,VI).
  593: *
  594:             VNORM = DASUM( N, VR, 1 ) + DASUM( N, VI, 1 )
  595:             IF( VNORM.GE.GROWTO*SCALE )
  596:      $         GO TO 280
  597: *
  598: *           Choose a new orthogonal starting vector and try again.
  599: *
  600:             Y = EPS3 / ( ROOTN+ONE )
  601:             VR( 1 ) = EPS3
  602:             VI( 1 ) = ZERO
  603: *
  604:             DO 260 I = 2, N
  605:                VR( I ) = Y
  606:                VI( I ) = ZERO
  607:   260       CONTINUE
  608:             VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
  609:   270    CONTINUE
  610: *
  611: *        Failure to find eigenvector in N iterations
  612: *
  613:          INFO = 1
  614: *
  615:   280    CONTINUE
  616: *
  617: *        Normalize eigenvector.
  618: *
  619:          VNORM = ZERO
  620:          DO 290 I = 1, N
  621:             VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) )
  622:   290    CONTINUE
  623:          CALL DSCAL( N, ONE / VNORM, VR, 1 )
  624:          CALL DSCAL( N, ONE / VNORM, VI, 1 )
  625: *
  626:       END IF
  627: *
  628:       RETURN
  629: *
  630: *     End of DLAEIN
  631: *
  632:       END

CVSweb interface <joel.bertrand@systella.fr>