File:  [local] / rpl / lapack / lapack / dlaeda.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:29 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
    2:      $                   GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     June 2010
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            CURLVL, CURPBM, INFO, N, TLVLS
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
   14:      $                   PRMPTR( * ), QPTR( * )
   15:       DOUBLE PRECISION   GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DLAEDA computes the Z vector corresponding to the merge step in the
   22: *  CURLVLth step of the merge process with TLVLS steps for the CURPBMth
   23: *  problem.
   24: *
   25: *  Arguments
   26: *  =========
   27: *
   28: *  N      (input) INTEGER
   29: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
   30: *
   31: *  TLVLS  (input) INTEGER
   32: *         The total number of merging levels in the overall divide and
   33: *         conquer tree.
   34: *
   35: *  CURLVL (input) INTEGER
   36: *         The current level in the overall merge routine,
   37: *         0 <= curlvl <= tlvls.
   38: *
   39: *  CURPBM (input) INTEGER
   40: *         The current problem in the current level in the overall
   41: *         merge routine (counting from upper left to lower right).
   42: *
   43: *  PRMPTR (input) INTEGER array, dimension (N lg N)
   44: *         Contains a list of pointers which indicate where in PERM a
   45: *         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
   46: *         indicates the size of the permutation and incidentally the
   47: *         size of the full, non-deflated problem.
   48: *
   49: *  PERM   (input) INTEGER array, dimension (N lg N)
   50: *         Contains the permutations (from deflation and sorting) to be
   51: *         applied to each eigenblock.
   52: *
   53: *  GIVPTR (input) INTEGER array, dimension (N lg N)
   54: *         Contains a list of pointers which indicate where in GIVCOL a
   55: *         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
   56: *         indicates the number of Givens rotations.
   57: *
   58: *  GIVCOL (input) INTEGER array, dimension (2, N lg N)
   59: *         Each pair of numbers indicates a pair of columns to take place
   60: *         in a Givens rotation.
   61: *
   62: *  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
   63: *         Each number indicates the S value to be used in the
   64: *         corresponding Givens rotation.
   65: *
   66: *  Q      (input) DOUBLE PRECISION array, dimension (N**2)
   67: *         Contains the square eigenblocks from previous levels, the
   68: *         starting positions for blocks are given by QPTR.
   69: *
   70: *  QPTR   (input) INTEGER array, dimension (N+2)
   71: *         Contains a list of pointers which indicate where in Q an
   72: *         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates
   73: *         the size of the block.
   74: *
   75: *  Z      (output) DOUBLE PRECISION array, dimension (N)
   76: *         On output this vector contains the updating vector (the last
   77: *         row of the first sub-eigenvector matrix and the first row of
   78: *         the second sub-eigenvector matrix).
   79: *
   80: *  ZTEMP  (workspace) DOUBLE PRECISION array, dimension (N)
   81: *
   82: *  INFO   (output) INTEGER
   83: *          = 0:  successful exit.
   84: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
   85: *
   86: *  Further Details
   87: *  ===============
   88: *
   89: *  Based on contributions by
   90: *     Jeff Rutter, Computer Science Division, University of California
   91: *     at Berkeley, USA
   92: *
   93: *  =====================================================================
   94: *
   95: *     .. Parameters ..
   96:       DOUBLE PRECISION   ZERO, HALF, ONE
   97:       PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
   98: *     ..
   99: *     .. Local Scalars ..
  100:       INTEGER            BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2,
  101:      $                   PTR, ZPTR1
  102: *     ..
  103: *     .. External Subroutines ..
  104:       EXTERNAL           DCOPY, DGEMV, DROT, XERBLA
  105: *     ..
  106: *     .. Intrinsic Functions ..
  107:       INTRINSIC          DBLE, INT, SQRT
  108: *     ..
  109: *     .. Executable Statements ..
  110: *
  111: *     Test the input parameters.
  112: *
  113:       INFO = 0
  114: *
  115:       IF( N.LT.0 ) THEN
  116:          INFO = -1
  117:       END IF
  118:       IF( INFO.NE.0 ) THEN
  119:          CALL XERBLA( 'DLAEDA', -INFO )
  120:          RETURN
  121:       END IF
  122: *
  123: *     Quick return if possible
  124: *
  125:       IF( N.EQ.0 )
  126:      $   RETURN
  127: *
  128: *     Determine location of first number in second half.
  129: *
  130:       MID = N / 2 + 1
  131: *
  132: *     Gather last/first rows of appropriate eigenblocks into center of Z
  133: *
  134:       PTR = 1
  135: *
  136: *     Determine location of lowest level subproblem in the full storage
  137: *     scheme
  138: *
  139:       CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1
  140: *
  141: *     Determine size of these matrices.  We add HALF to the value of
  142: *     the SQRT in case the machine underestimates one of these square
  143: *     roots.
  144: *
  145:       BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
  146:       BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) )
  147:       DO 10 K = 1, MID - BSIZ1 - 1
  148:          Z( K ) = ZERO
  149:    10 CONTINUE
  150:       CALL DCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1,
  151:      $            Z( MID-BSIZ1 ), 1 )
  152:       CALL DCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 )
  153:       DO 20 K = MID + BSIZ2, N
  154:          Z( K ) = ZERO
  155:    20 CONTINUE
  156: *
  157: *     Loop through remaining levels 1 -> CURLVL applying the Givens
  158: *     rotations and permutation and then multiplying the center matrices
  159: *     against the current Z.
  160: *
  161:       PTR = 2**TLVLS + 1
  162:       DO 70 K = 1, CURLVL - 1
  163:          CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1
  164:          PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
  165:          PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
  166:          ZPTR1 = MID - PSIZ1
  167: *
  168: *       Apply Givens at CURR and CURR+1
  169: *
  170:          DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1
  171:             CALL DROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1,
  172:      $                 Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ),
  173:      $                 GIVNUM( 2, I ) )
  174:    30    CONTINUE
  175:          DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1
  176:             CALL DROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1,
  177:      $                 Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ),
  178:      $                 GIVNUM( 2, I ) )
  179:    40    CONTINUE
  180:          PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
  181:          PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
  182:          DO 50 I = 0, PSIZ1 - 1
  183:             ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 )
  184:    50    CONTINUE
  185:          DO 60 I = 0, PSIZ2 - 1
  186:             ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 )
  187:    60    CONTINUE
  188: *
  189: *        Multiply Blocks at CURR and CURR+1
  190: *
  191: *        Determine size of these matrices.  We add HALF to the value of
  192: *        the SQRT in case the machine underestimates one of these
  193: *        square roots.
  194: *
  195:          BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
  196:          BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+
  197:      $           1 ) ) ) )
  198:          IF( BSIZ1.GT.0 ) THEN
  199:             CALL DGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ),
  200:      $                  BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 )
  201:          END IF
  202:          CALL DCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ),
  203:      $               1 )
  204:          IF( BSIZ2.GT.0 ) THEN
  205:             CALL DGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ),
  206:      $                  BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 )
  207:          END IF
  208:          CALL DCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1,
  209:      $               Z( MID+BSIZ2 ), 1 )
  210: *
  211:          PTR = PTR + 2**( TLVLS-K )
  212:    70 CONTINUE
  213: *
  214:       RETURN
  215: *
  216: *     End of DLAEDA
  217: *
  218:       END

CVSweb interface <joel.bertrand@systella.fr>